SOUTHERN CROSS UNIVERSITY COFFS HARBOUR ALLIED HEALTH BUILDING TRAFFIC IMPACT ASSESSMENT

FOR

SOUTHERN CROSS UNIVERSITY

Gold Coast

Project No:

Suite 26, 58 Riverwalk Avenue Robina QLD 4226 P: (07) 5562 5377

W: www.bitziosconsulting.com.au P3480

Brisbane

Level 2, 428 Upper Edward Street Spring Hill QLD 4000 P: (07) 3831 4442 E: admin@bitziosconsulting.com.au

Studio 203, 3 Gladstone Street Newtown NSW 2042 P: (02) 9557 6202

Version No: 005 Issue date: 23rd August 2018

DOCUMENT CONTROL SHEET

Issue History

Report File Name	Prepared by	Reviewed by	Issued by	Date	Issued to
P3480.001R SCU Coffs Harbour TIA Report	L. Johnston / S. Koskela	A. Bitzios	L. Johnston	26/02/2018	Lilian Arli
	Koskeia				dwp Australia Pty Ltd
P3480.002R SCU Coffs Harbour TIA Report	L. Johnston / S.	A. Bitzios	L. Johnston	02/03/2018	Lilian Arli
	Koskela				dwp Australia Pty Ltd
P3480.003R SCU Coffs Harbour TIA Report	L. Johnston / S. Koskela	A. Bitzios	L. Johnston	17/04/2018	Lilian Arli
					dwp Australia Pty Ltd
P3480.004R SCU Coffs Harbour TIA Report	L. Johnston / S.	A. Bitzios	L. Johnston	17/08/2018	Lilian Arli
	Koskela				dwp Australia Pty Ltd
P3480.005R SCU Coffs Harbour TIA Report	L. Johnston / S.	A. Bitzios	L. Johnston	23/08/2018	Lilian Arli
	Koskela				dwp Australia Pty Ltd

Copyright in the information and data in this document is the property of Bitzios Consulting. This document and its information and data is for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or in part for any purpose other than for which it was supplied by Bitzios Consulting. Bitzios Consulting makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or its information and data.

CONTENTS

		Page
1.	Introduction	1
1.1	BACKGROUND	1
1.2	Information Request	1
1.3	PROPOSED DEVELOPMENT	2
1.4	SCOPE	2
2.	EXISTING CONDITIONS	3
2.1	SUBJECT SITE	3
2.2	ROAD NETWORK	3
2.3	BACKGROUND TRAFFIC VOLUMES	3
2.4	Mode Share	4
3.	TRAFFIC ASSESSMENT	5
3.1	SEASONALITY	5
3.2	BACKGROUND TRAFFIC GROWTH	5
3.3	FORECAST BACKGROUND TRAFFIC VOLUMES	6
3.4	Traffic Generation	7
3.5	Traffic Distribution	7
3.6	DESIGN TRAFFIC VOLUMES	8
4.	INTERSECTION PERFORMANCE ASSESSMENT	9
4.1	METHODOLOGY	9
4.2	SIDRA OUTPUTS	10
4.3	SENSITIVITY ANALYSIS	12
5.	PARKING ASSESSMENT	16
5.1	EXISTING CAR PARKING PROVISION	16
5.2	EXISTING CAR PARKING DEMAND	18
5.2.1	3,	18
5.2.2 5.2.3		19 20
5.3	Previous Parking Assessment	21
5.4	REVISED PARKING ASSESSMENT	22
5.5	BICYCLE PARKING	22
6.	Access and Servicing Assessment	23
6.1	PARKING LAYOUT	23
6.2	SERVICING AND REFUSE COLLECTION	23
7	CONCLUSION	24

_		
ıа	n	169

Table 1.1: Proposed Development Expected Enrolments

Table 2.1: Surrounding Road Network Table 2.2: CHEC Travel Mode Survey

Table 3.1: Derived Trip Rates

Table 3.2: Development Traffic Generation

Table 4.1: 2019 Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout Summary
Table 4.2: 2029 Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout Base Summary

Table 4.3: 2019 Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout Sensitivity Analysis Summary Table 4.4: 2029 Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout Sensitivity Analysis Summary

Table 5.1: On-Site Parking Summary

Table 5.2: 2018 CHEC Parking Survey Summary

Table 5.3: CHEC Campus Patronage Table 5.4: CHEC Campus Parking Demand Bicycle Parking Provision

Figures

Figure 1.1: Subject Site Location

Figure 2.1: 2012 Peak-Hour Background Traffic Volumes Figure 2.2: 2018 Peak-Hour Background Traffic Volumes Figure 3.1: Peak-Hour Rate of Growth from 2012 to 2018

Figure 3.2: Projected CHEC Growth

Figure 3.3: 2019 Forecast Background Traffic Volumes Figure 3.4: 2029 Forecast Background Traffic Volumes

Figure 3.5: Development Traffic Distribution
Figure 3.6: Development Traffic Assignment
Figure 3.7: 2019 Design Traffic Volumes
Figure 3.8: 2029 Design Traffic Volumes

Figure 4.1: Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout Configuration

Figure 4.2: 2019 Sensitivity Analysis Forecast Background Traffic Volumes Figure 4.3: 2029 Sensitivity Analysis Forecast Background Traffic Volumes

Figure 4.4: 2019 Sensitivity Analysis Design Traffic Volumes Figure 4.5: 2019 Sensitivity Analysis Design Traffic Volumes

Figure 5.1: On-Site Parking Layout

Figure 5.2: Event Peak-Hour Parking Occupancy

Figure 5.3: Typical Weekday Peak-Hour Parking Occupancy

Appendices

Appendix A: Detailed Development Plans
Appendix B: TDC 2012 Traffic Survey Summary
Appendix C: TDC 2018 Traffic Survey Summary

Appendix D: McLaren Traffic Engineering Traffic Impact Assessment (DA 1127/07)

Appendix E: Coffs Harbour Traffic Study
Appendix F: Detailed SIDRA Summaries
Appendix G: TDC Parking Survey Data

Appendix H: McLaren Traffic Engineering Traffic Letter

Appendix I: Swept Paths

1. INTRODUCTION

1.1 BACKGROUND

Bitzios Consulting has been commissioned by Southern Cross University (SCU) to prepare a response to Coffs Harbour City Council's (Council's) Request For Information (RFI) for the proposed SCU Coffs Harbour Allied Health Building. The subject site location is shown in Figure 1.1.

Figure 1.1: Subject Site Location

1.2 Information Request

Council's RFI for the above development (dated 3rd July 2018) contains the following traffic related items:

Traffic

The submitted Traffic Impact Assessment demonstrated that by 2021 (i.e. within the 10-year planning horizon) the existing roundabout will be operating at an unacceptable level of service, impacted by the increased volume of students. This issue is required to be addressed as part of the development. The Traffic Impact Assessment proposes traffic control signals as a solution. If this is the proposed solution, Council will require the following information for further consideration:

- More recent traffic count data (the TIA relies on traffic counts that are 10 years old);
- The assessment has not demonstrated that the site meets the required warrants for traffic signals (as outlined in RTA Traffic Signal Design, Section 2 – Warrants);
- Concept design details of the proposed intersection demonstrating the feasibility of the intersection in the context of site constraints, such as land availability to accommodate the intersection:
- Details of cumulative impacts on the road network, particularly Hogbin Drive and Stadium Drive during peak times resulting from signalisation;
- Details of incorporation of active transport modes such as walking and cycling in the intersection design as well as safe system principles such as speed calming and platforms.

Parking

The parking assessment provided with the application is required to be reviewed, based on the following:

• it is noted in the 2010 survey, McLaren Traffic Assessment found that 115 car spaces of the 858 on the site were available (86% utilised) during the morning peak (10am), and it is determined that the current development will generate a need for 155 spaces. An additional 26 spaces are proposed with this development which results in a shortfall of 14 spaces. However, the parking demand was based on survey results from a 2007 survey (by McLaren) which adopted 25% of students on-site at any one time. This assessment isn't considered sufficient to inform the current parking demand and a new multi-day parking utilisation survey should be undertaken and the parking demand reviewed accordingly.

The proposed car parking layout does not accord with swept paths for waste collection vehicles having regard to spaces and kerbs/islands. The car park design will need to be modified to allow suitable collection of waste.

These items have been addressed herein this report.

1.3 Proposed Development

The proposed development is for a new allied health building at the existing Coffs Harbour Education Campus (CHEC). The building will be accessed via existing internal roadways and will include the provision of an additional car park.

The building is expected to accommodate 155 enrolments across various health science discipline with a summary of the expected enrolments provided in Table 1.1.

Discipline	EFT Student Enrolments 2019		
Nursing	35		
Exercise Science	60		
Occupational Therapy	20		
Psychology	20		
Paramedics	20		
Total	155		

The expected number of staff to be accommodated by the proposed development is considered to be 20% the number of EFT students (i.e. 31 staff in 2019).

1.4 SCOPE

The scope of this assessment included the following:

- revise traffic assessment based on 2018 traffic count data;
- revise existing SIDRA model for the Hogbin Drive / Stadium Drive / Doug Knight Drive intersection for year of opening and 10-year design horizon;
- perform sensitivity analysis on forecast background traffic volumes to establish maximum growth rate;
- review parking utilisation data to determine current parking demand;
- identify the location and extent of surplus for each existing car parking area; and
- undertake swept path assessment for waste collection vehicle and rural fire service (RFS) vehicle manoeuvring.

2. EXISTING CONDITIONS

2.1 SUBJECT SITE

The proposed development is located within the CHEC, which includes SCU Coffs Harbour, North Coast TAFE and Coffs Harbour Senior College.

2.2 ROAD NETWORK

Details of the surrounding road network are provided in Table 2.1.

Table 2.1: Surrounding Road Network

Road Name	Lanes	Speed Limit	Divided	Jurisdiction	Hierarchy	Details
Hogbin Drive	4	80 km/h	No		Arterial	N-S road parallel to Pacific Highway which connects Coffs Harbour and Sawtell.
Stadium Drive	2	60 km/h	No	Council	Collector	E-W road which connects Pacific Highway and Hogbin Drive.
Doug Knight Drive	2	40 km/h	No		Access	Access road for the CHEC campus.

2.3 BACKGROUND TRAFFIC VOLUMES

Background traffic volumes were obtained from traffic surveys undertaken by Traffic Data and Control (TDC) for the Hogbin Drive / Stadium Drive / Doug Knight Drive roundabout dated Wednesday 28th November 2012 and Thursday 29th November 2012, from 3:00PM to 6:00PM and 7:00AM to 10:00AM respectively. The results of these traffic surveys are provided in Figure 2.1.

Figure 2.1: 2012 Peak-Hour Background Traffic Volumes

To address the traffic item in Council's RFI, recent background traffic volumes were obtained from traffic surveys undertaken by Traffic Data and Control (TDC) for the Hogbin Drive / Stadium Drive / Doug Knight Drive roundabout dated Thursday 2nd August, from 7:00AM to 9:00AM and 3:00PM to 6:00PM. The results of these traffic surveys are provided in Figure 2.2.

Figure 2.2: 2018 Peak-Hour Background Traffic Volumes

A summary of the TDC 2012 and 2018 traffic survey results are provided in Appendix B and Appendix C respectively.

2.4 MODE SHARE

A previous traffic impact assessment prepared by McLaren Traffic Engineering for a previous development application (DA 1127/07) at the CHEC campus, dated 9th August 2007, provided results for a travel mode survey undertaken 9th August 2007. The findings of this survey are shown in Table 2.2.

Table 2.2: CHEC Travel Mode Survey

Establishment	Participants	% Total	% Bus	% Driver	% Passenger	% Bicycle
SCU	235	37	9	76	12	3
TAFE	292	46	22	50	24	4
CHSC	106	17	53	13	28	6
Total	633	100	22	53	20	5

Additionally, the survey found the driver proportion of staff is 92%, and that of the students that drive all park on site at all times.

The McLaren traffic impact assessment is provided in Appendix D.

3. TRAFFIC ASSESSMENT

3.1 SEASONALITY

Given that the two (2) traffic surveys obtained by Bitzios Consulting were undertaken at different times of the year (i.e. November 2012 and August 2018), it is important to acknowledge seasonal changes in traffic.

The Roads and Maritime Services (RMS) Volume Viewer provides traffic data from 2011 for the Pacific Highway through Coffs Harbour. This data is considered unlikely to be representative of seasonal traffic changes on Hogbin Drive, noting the hierarchal and functional difference between the two roads. Additionally, seasonality data is not available on Council's website and was not considered in a previous intersection analysis report issued by Bitzios Consulting to Council, dated 20th December 2012. This previous report is provided in Appendix E.

In any case, while the 2012 surveys were undertaken during the warmer period of the year compared to the 2018 surveys, changes in traffic on Hogbin Drive due to seasonality are not expected, noting that the surveys were not conducted during peak holiday periods.

3.2 BACKGROUND TRAFFIC GROWTH

A previous intersection analysis report issued by Bitzios Consulting to Council, dated 20th December 2012, compared TDC traffic survey data for several Hogbin Drive intersections, undertaken November 2012, to tube count data of Hogbin Drive provided by Council, undertaken in 2008. This comparison resulted in compounding growth rates per annum of 3.4% in the AM and 2.5% in the PM.

Noting that Bitzios Consulting has obtained two (2) intersection traffic surveys of the subject roundabout (i.e. a survey in 2012 and a survey in 2018) the growth rate can be derived from the values shown in Figure 3.1.

Figure 3.1: Peak-Hour Rate of Growth from 2012 to 2018

Figure 3.1 shows that traffic has mostly remained steady or decreased from 2012 to 2018, contrary to the traffic growth from 2008 to 2012. In the interest of providing a conservative assessment, a growth rate of 1% compounding per annum has been applied to all non-CHEC traffic movements (i.e. all movements not associated with Doug Knight Drive).

The projected equivalent full-time student load (EFTSL) for CHEC has been provided by the applicant as shown in Figure 3.2.

Source: Southern Cross University

Figure 3.2: Projected CHEC Growth

The projected EFTSL growth from 2022 to 2029 (ultimate year) is considered to be 40 EFT students /year, as per the constant growth from 2020 to 2022. The growth rate derived from the projected EFTSL has been applied to the traffic movements associated with Doug Knight Drive.

3.3 FORECAST BACKGROUND TRAFFIC VOLUMES

The year-of-opening (2019) and 10-year design horizon (2029) forecast background traffic volumes are provided in Figure 3.3 and Figure 3.4 respectively.

Figure 3.3: 2019 Forecast Background Traffic Volumes

Figure 3.4: 2029 Forecast Background Traffic Volumes

3.4 TRAFFIC GENERATION

Traffic generation rates are not specified for tertiary education developments within RMS *To Traffic Generating Developments (2002)*, therefore a first-principles analysis has been undertaken.

The AM and PM trip rates have been derived from the 2018 traffic survey data on the basis of EFTSL, with rates for both 'in' and 'out' trips derived for both peaks. The derived trips rates are summarised in Table 3.1.

Table 3.1: Derived Trip Rates

Peak Period	Current EFTSL	Total Veh	nicle Trips	Derived Trip Rate (trips/EFTSL)		
		IN	OUT	IN	Out	
AM	2,671	438	96	0.164	0.036	
PM		18	42	0.007	0.016	

The development traffic generation based on the derived trip rates and proposed development EFTSL is summarised in Table 3.2.

Table 3.2: Development Traffic Generation

Peak Period	Proposed		Trip Rate EFTSL)	Total Peak Hour Trips		
	Development EFTSL	IN	OUT	IN	Out	
AM	455	0.164	96	25	6	
PM	155	0.007	42	1	2	

The proposed development will generate a total of 31 trips in the AM peak, and 3 trips in the PM peak.

3.5 TRAFFIC DISTRIBUTION

The future development traffic distribution is based on the existing CHEC distribution as observed in the 2018 traffic survey. The resultant distribution is provided in Figure 3.5.

Figure 3.5: Development Traffic Distribution

The development traffic assignment has been estimated on the basis of the traffic distribution and is provided in Figure 3.6.

Figure 3.6: Development Traffic Assignment

3.6 DESIGN TRAFFIC VOLUMES

The 2019 and 2029 design traffic volumes (i.e. background traffic plus development traffic) are provided in Figure 3.7 and Figure 3.8 respectively.

Figure 3.7: 2019 Design Traffic Volumes

Figure 3.8: 2029 Design Traffic Volumes

4. Intersection Performance Assessment

4.1 **M**ETHODOLOGY

The operational performance of the Hogbin Drive / Stadium Drive / Doug Knight Drive intersection was analysed using SIDRA Intersection 7.0 to assess both the base and design scenarios for 2019 year-of-completion and 2029 10-year design horizon.

Key methodologies and assumptions included:

- peak hour profiles have been derived from survey data;
- posted speed limits were used in the 'Vehicle Movement Data' dialogue; and
- gap acceptance factors remain as SIDRA default values.

The existing configuration of the Hogbin Drive / Stadium Drive / Doug Knight Drive roundabout is illustrated in Figure 4.1.

Figure 4.1: Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout Configuration

4.2 SIDRA OUTPUTS

The SIDRA results for the Hogbin Drive / Stadium Drive / Doug Knight Drive roundabout base and design scenarios for 2019 year-of-completion are provided in Table 4.1.

Table 4.1: 2019 Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout Summary

		l l	AM Peak Hou	r	PM Peak Hour			
Approach	Movement	DOS (v/c)	Delay (s)	95%ile Queue (m)	DOS (v/c)	Delay (s)	95%ile Queue (m)	
			Base S	cenario				
	Left	0.474	6.0	25.3	0.162	4.6	6.1	
Hogbin Drive (S)	Through	0.474	5.7	25.3	0.162	4.6	6.1	
Divo (o)	Right	0.474	11.8	23.9	0.162	11.1	6.0	
Doug	Left	0.052	7.4	2.1	0.016	7.5	0.6	
Knight	Through	0.090	3.7	3.7	0.036	2.8	1.2	
Drive (E)	Right	0.090	8.6	3.7	0.036	7.5	1.2	
	Left	0.405	5.7	19.5	0.222	4.4	8.9	
Hogbin Drive (N)	Through	0.495	5.5	27.0	0.271	4.3	11.7	
Dive (N)	Right	0.495	11.0	27.0	0.271	9.9	11.7	
G. "	Left	0.395	7.0	16.8	0.185	4.8	6.6	
Stadium Drive (W)	Through	0.359	7.9	14.0	0.151	5.8	5.2	
Dilve (vv)	Right	0.359	14.0	14.0	0.151	10.7	5.2	
			Design S	Scenario				
	Left	0.479	6.1	25.7	0.162	4.6	6.1	
Hogbin Drive (S)	Through	0.479	5.8	25.7	0.162	4.6	6.1	
Dive (o)	Right	0.479	11.8	24.3	0.162	11.1	6.0	
Doug	Left	0.057	7.5	2.3	0.018	7.6	0.7	
Knight	Through	0.098	3.8	4.1	0.038	2.9	1.3	
Drive (E)	Right	0.098	8.6	4.1	0.038	7.5	1.3	
	Left	0.415	5.8	20.1	0.223	4.4	8.9	
Hogbin Drive (N)	Through	0.507	5.6	28.0	0.273	4.3	11.7	
Diivo (14)	Right	0.507	11.1	28.0	0.273	9.9	11.7	
a	Left	0.397	7.1	17.0	0.185	4.8	6.6	
Stadium Drive (W)	Through	0.370	8.0	14.7	0.152	5.8	5.2	
Diive (vv)	Right	0.370	14.1	14.7	0.152	10.8	5.2	

The results in Table 4.1 indicate the intersection is anticipated to operate within acceptable performance limits for a roundabout (i.e. DOS < 0.85) in 2019 year-of-opening for the base and design traffic scenarios. No upgrades are required upon completion of the proposed development in order to maintain the operability of the intersection.

The SIDRA results for the Hogbin Drive / Stadium Drive / Doug Knight Drive roundabout base scenarios for 2029 10-year design horizon are provided in Table 4.2.

Table 4.2: 2029 Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout Base Summary

		P	AM Peak Hou	r	PM Peak Hour			
Approach	Movement	DOS (v/c)	Delay (s)	95%ile Queue (m)	DOS (v/c)	Delay (s)	95%ile Queue (m)	
			Base So	cenario				
	Left	0.555	7.0	34.7	0.183	4.7	7.1	
Hogbin Drive (S)	Through	0.555	6.7	34.7	0.183	4.7	7.1	
Diivo (o)	Right	0.555	12.9	33.4	0.183	11.4	6.9	
Doug	Left	0.071	8.2	3.0	0.022	8.0	0.8	
Knight	Through	0.122	4.3	5.3	0.046	3.1	1.6	
Drive (E)	Right	0.122	9.1	5.3	0.046	7.7	1.6	
	Left	0.482	6.3	25.0	0.247	4.5	10.1	
Hogbin Drive (N)	Through	0.589	6.4	38.6	0.301	4.4	13.4	
Diivo (iv)	Right	0.589	12.2	38.6	0.301	10.0	13.4	
0, "	Left	0.478	8.2	22.8	0.209	4.9	7.6	
Stadium Drive (W)	Through	0.464	9.5	20.4	0.174	6.1	6.1	
Billo (II)	Right	0.464	15.6	20.4	0.174	10.9	6.1	
			Design S	Scenario				
I I a salada	Left	0.558	7.0	35.3	0.184	4.7	7.1	
Hogbin Drive (S)	Through	0.558	6.8	35.3	0.184	4.7	7.1	
5(0)	Right	0.558	13.0	33.9	0.184	11.4	7.0	
Doug	Left	0.072	8.3	3.0	0.022	8.1	0.6	
Knight	Through	0.123	4.4	5.4	0.049	3.2	1.7	
Drive (E)	Right	0.123	9.2	5.4	0.049	7.7	1.7	
	Left	0.495	6.6	26.4	0.251	4.5	10.3	
Hogbin Drive (N)	Through	0.604	6.8	41.2	0.306	4.4	13.7	
5,,,,,	Right	0.604	12.5	41.2	0.306	10.0	13.7	
01 1	Left	0.480	8.2	23.0	0.210	4.9	7.6	
Stadium Drive (W)	Through	0.479	9.6	21.4	0.174	6.1	6.1	
3	Right	0.479	15.8	21.4	0.174	10.9	6.1	

The results in Table 4.2 indicate the intersection is anticipated to operate within acceptable performance limits for a roundabout (i.e. DOS < 0.85) in 2029 10-year design horizon for the base and design traffic scenarios. No upgrades are required in the ultimate year in order to maintain the operability of the intersection.

Detailed SIDRA summaries are provided in Appendix F.

4.3 SENSITIVITY ANALYSIS

While the comparison of the most recent traffic survey data (2012-2018) indicates that the background growth rate on Hogbin Drive has declined since 2012, a sensitivity analysis has been undertaken to establish if the Hogbin Drive / Stadium Drive / Doug Knight Drive roundabout can operate within the acceptable performance limits if the maximum growth rate derived prior to 2012 is applied to the 2019 and 2029 base scenarios. For the purpose of the sensitivity test, a 3.5% p.a. compounding growth rate has been applied to both the 2018 AM and PM peak hour traffic movements not associated with Doug Knight Drive.

The sensitivity analysis year-of-opening (2019) and 10-year design horizon (2029) forecast background traffic volumes are provided in Figure 4.2 and Figure 4.3 respectively.

Figure 4.2: 2019 Sensitivity Analysis Forecast Background Traffic Volumes

Figure 4.3: 2029 Sensitivity Analysis Forecast Background Traffic Volumes

The 2019 and 2029 design traffic volumes (i.e. background traffic plus development traffic) are provided in Figure 4.4 and Figure 4.5 respectively.

Figure 4.4: 2019 Sensitivity Analysis Design Traffic Volumes

Figure 4.5: 2019 Sensitivity Analysis Design Traffic Volumes

The SIDRA results for the Hogbin Drive / Stadium Drive / Doug Knight Drive roundabout base scenarios for 2019 sensitivity analysis 10-year design horizon are provided in Table 4.3.

Table 4.3: 2019 Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout Sensitivity Analysis Summary

		A	AM Peak Hou	r	PM Peak Hour			
Approach	Movement	DOS (v/c)	Delay (s)	95%ile Queue (m)	DOS (v/c)	Delay (s)	95%ile Queue (m)	
			Base S	cenario				
	Left	0.488	6.1	26.5	0.166	4.6	6.3	
Hogbin Drive (S)	Through	0.448	5.8	26.5	0.166	4.6	6.3	
Dilve (O)	Right	0.448	11.9	25.0	0.166	11.2	6.2	
Doug	Left	0.053	7.6	2.1	0.016	7.7	0.6	
Knight	Through	0.091	3.8	3.8	0.037	2.9	1.2	
Drive (E)	Right	0.091	8.7	3.8	0.037	7.5	1.2	
	Left	0.413	5.7	20.1	0.228	4.4	9.2	
Hogbin Drive (N)	Through	0.505	5.5	27.9	0.279	4.3	12.1	
Dilve (14)	Right	0.505	11.1	27.9	0.279	9.9	12.1	
.	Left	0.411	7.2	17.9	0.190	4.8	6.8	
Stadium Drive (W)	Through	0.370	8.1	14.7	0.156	5.9	5.4	
Dilve (vv)	Right	0.370	14.2	14.7	0.156	10.8	5.4	
			Design S	Scenario				
	Left	0.493	6.2	26.9	0.254	5.1	10.8	
Hogbin Drive (S)	Through	0.493	5.8	26.9	0.254	5.2	10.8	
Dilve (O)	Right	0.493	Base Scenario Queue (m) DOS (v/c) .488 6.1 26.5 0.166 .448 5.8 26.5 0.166 .448 11.9 25.0 0.166 .053 7.6 2.1 0.016 .091 3.8 3.8 0.037 .091 8.7 3.8 0.037 .413 5.7 20.1 0.228 .505 5.5 27.9 0.279 .411 7.2 17.9 0.190 .370 8.1 14.7 0.156 .370 14.2 14.7 0.156 .493 6.2 26.9 0.254 .493 5.8 26.9 0.254 .493 11.9 25.4 0.025 .058 7.6 2.4 0.025 .099 3.9 4.2 0.054 .099 8.7 4.2 0.054 .518 5.7 29.0 0.418	12.0	10.5			
Doug	Left	0.058	7.6	2.4	0.025	9.6	1.0	
Knight	Through	0.099	3.9	4.2	0.054	4.1	2.0	
Drive (E)	Right	0.099	8.7	4.2	0.054	8.6	2.0	
	Left	0.424	5.9	20.7	0.342	4.9	15.5	
Hogbin Drive (N)	Through	0.518	5.7	29.0	0.418	4.8	21.1	
Diivo (iv)	Right	0.518	11.2	29.0	0.418	10.3	21.1	
.	Left	0.414	7.3	18.2	0.293	5.4	11.3	
Stadium Drive (W)	Through	0.385	8.3	15.5	0.245	6.8	8.9	
טוועט (אא)	Right	0.385	14.3	15.5	0.245	11.5	8.9	

The results in Table 4.3 indicate the intersection is anticipated to operate within acceptable performance limits for a roundabout (i.e. DOS < 0.85) in 2019 year-of-opening for the base and design traffic scenarios.

The SIDRA results for the Hogbin Drive / Stadium Drive / Doug Knight Drive roundabout base scenarios for 2029 sensitivity analysis 10-year design horizon are provided in Table 4.4.

Table 4.4: 2029 Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout Sensitivity Analysis Summary

		P	AM Peak Hou	r		PM Peak Hou	r
Approach	Movement	DOS (v/c)	Delay (s)	95%ile Queue (m)	DOS (v/c)	Delay (s)	95%ile Queue (m)
			Base So	cenario			
	Left	0.797	13.2	89.8	0.254	5.1	10.8
Hogbin Drive (S)	Through	0.797	13.1	89.8	0.254	5.2	10.8
Dive (o)	Right	0.797	19.8	83.5	0.254	12.0	10.5
Doug	Left	0.096	10.5	4.2	0.025	9.6	1.0
Knight	Through	0.164	6.0	7.7	0.054	4.1	2.0
Drive (E)	Right	0.164	10.8	7.7	0.054	8.6	2.0
	Left	0.624	8.5	44.1	0.343	4.9	15.5
Hogbin Drive (N)	Through	0.763	9.2	77.0	0.418	4.8	21.1
Divo (iv)	Right	0.763	15.4	77.0	0.418	10.3	21.1
Ot I	Left	0.834	19.3	63.2	0.293	5.4	11.3
Stadium Drive (W)	Through	0.750	18.2	42.7	0.245	6.8	8.9
Diivo (iv)	Right	0.750	24.5	42.7	0.245	11.5	8.9
			Design S	Scenario			
I I a sub-lis	Left	0.802	13.4	91.9	0.255	5.1	10.8
Hogbin Drive (S)	Through	0.802	13.4	91.9	0.255	5.2	10.8
<i>Direc</i> (6)	Right	0.802	20.0	85.4	0.255	12.0	10.5
Doug	Left	0.097	10.6	4.2	0.025	9.6	1.0
Knight	Through	0.166	6.1	7.9	0.054	4.1	2.0
Drive (E)	Right	0.166	10.8	7.9	0.054	8.6	2.0
	Left	0.639	8.9	46.6	0.342	4.9	15.5
Hogbin Drive (N)	Through	0.781	9.9	83.0	0.418	4.8	21.1
	Right	0.781	16.2	83.0	0.418	10.3	21.1
01 "	Left	0.840	19.8	64.3	0.294	5.4	11.3
Stadium Drive (W)	Through	0.774	19.5	45.6	0.246	6.8	8.9
51100 (00)	Right	0.774	25.7	45.6	0.246	11.5	8.9

The results in Table 4.4 indicate the intersection is anticipated to operate within acceptable performance limits for a roundabout (i.e. DOS < 0.85) in 2029 10-year design horizon for the base and design traffic scenarios.

The results in Table 4.3 and Table 4.4 demonstrate the roundabout can support background traffic growth at a maximum rate of 3.5% p.a. compounding for 10 years post-opening, both with and without the inclusion of the proposed development, without the requirement for any intersection upgrade works.

Detailed SIDRA summaries are provided in Appendix F.

5. PARKING ASSESSMENT

5.1 EXISTING CAR PARKING PROVISION

A parking inventory created for the surveys identified a total of 921 car spaces are available on the CHEC. On-site parking has been separated into 28 zones, as shown in Figure 5.1. A summary of each of these parking zones is provided in Table 5.1. This zoning provides a basis for the parking surveys undertaken.

Figure 5.1: On-Site Parking Layout

Table 5.1: On-Site Parking Summary

Zone	Description	Parking
ZOIIG	·	Spaces
1	A Block/Head of Campus parking west side	5
2	A Block/Head of Campus parking east side	4
3	O Block carpark on Doug Knight Drive	5
4	Staff parking carpark	49
5	Large carpark next to Block N	75
6	Carpark in front of Block K	10
7	Roadside marked bays between Blocks S & I (west side)	13
8	Roadside marked bays between K Block & Innovation Centre entrance	23
9	Roadside marked bays from Innovation Centre entrance to carpark entrance	9
10	Innovation Centre carpark	21
11	Carpark in front of Block M	68
12	3 carparks opposite entrance to Innovation Centre carpark	3
13	Library / E Block undercover carpark	34
14	Cars in marked bays in front of Library undercover parking	7
15	Cars parked parallel to curb in marked bays	5
16	Undercover parking south of Block I	7
17	Undercover parking north of Block I	3
18	Large carpark on corner of Memorial Drive & Doug Knight Drive (Hogbin Drive side)	211
19	Carpark on corner of Memorial Drive & Doug Knight Drive (Campus side)	42
20	Large Carpark on Memorial Drive between T Block (Sports Centre) & L Block	180
21	Small carpark at L Block	23
22	Parked line of cars at right angle to L Block	7
23	Roadside angled parking between L Block & P Block	30
24	Cars parked beside P Block	4
25	Small carpark in front of P Block	15
26	Carpark at H Block	13
27	Roadside parking between P Block & H Block	49
28	Marked parking area north of Area 27	6
	Total	921

Zone 18 is the key parking area for the proposed development, noting that this parking area is the nearest in proximity to the subject site and has the largest parking capacity, accounting for 23% of the total on-site parking provision.

5.2 EXISTING CAR PARKING DEMAND

5.2.1 Parking Survey Results

To address the parking item of Council's RFI, the existing car parking demand of the CHEC was established by undertaking parking surveys. The surveys were undertaken on both Wednesday 1st August 2018 and Thursday 2nd August 2018. It should be noted that the CHEC hosted the Coffs Harbour Post-Secondary School Options Expo on Wednesday 1st August 2018. As such, the total number of persons present at the campus was higher than that experienced during typical daily operations (i.e. outside of event times). The campus operations on Thursday 2nd August 2018 were understood to be representative of typical daily operations. The complete parking survey results are provided in Appendix G.

Table 5.2: 2018 CHEC Parking Survey Summary

Time	Wednesday 1st Au	gust 2018 (Event)	Thursday 2 nd Aug	ust 2018 (Typical)
Time Starting	Occupied Spaces (%)	Unoccupied Spaces (%)	Occupied Spaces (%)	Unoccupied Spaces (%)
7:00AM	55 (6%)	866 (94%)	63 (7%)	858 (93%)
8:00AM	202 (22%)	719 (78%)	187 (20%)	734 (80%)
9:00AM	695 (75%)	226 (25%)	465 (50%)	456 (50%)
10:00AM	851 (92%)	70 (8%)	610 (66%)	311 (34%)
11:00AM	854 (93%)	67 (7%)	598 (65%)	323 (35%)
12:00PM	847 (92%)	74 (8%)	358 (39%)	563 (39%)
1:00PM	729 (79%)	192 (21%)	172 (19%)	749 (19%)
2:00PM	700 (76%)	221 (24%)	118 (13%)	803 (13%)
3:00PM	570 (62%)	351 (38%)	105 (11%)	816 (11%)
4:00PM	366 (40%)	555 (60%)	91 (10%)	830 (10%)
5:00PM	198 (21%)	723 (79%)	72 (8%)	849 (8%)
6:00PM	135 (15%)	786 (85%)	67 (7%)	854 (7%)
Average	517 (56%)	404 (44%)	242 (26%)	679 (74%)

5.2.2 Event Parking Summary

On the event day, the peak-hour parking occupancy was measured to be 93% across the entire campus. This peak-hour was recorded at 11:00AM, noting that the event was held from 12:00PM to 3:00PM. A diagram of the event parking occupancy by zone is provided in Figure 5.2.

Figure 5.2: Event Peak-Hour Parking Occupancy

5.2.3 Typical Parking Summary

On the typical weekday, the peak hour parking occupancy was measured to be 66% across the entire campus, and was recorded at 10:00AM. Additionally, the parking occupancy of Zone 18 was measured at 32%, with 144 available parking spaces. As such, if the 26 parking spaces on the front door of the development were occupied, there is capacity in the next closest parking area for utilisation by staff, students or visitors. A diagram of the typical parking occupancy by zone is provided in Figure 5.3.

Figure 5.3: Typical Weekday Peak-Hour Parking Occupancy

5.3 Previous Parking Assessment

The Coffs Harbour Development Control Plan (DCP) does not specify a particular parking rate for educational establishments, therefore the parking requirement for this development has been determined as detailed below. Given that on-site parking is unallocated to each particular land use, this assessment considers the CHEC campus as a whole.

The parking demand is dependent on the overall patronage to the CHEC campus as well as the travel modes of these patrons. The student and staff patronage for the TAFE and school, and the student patronage for the existing university campus and the proposed development, was obtained from SCU. The staff rate for the existing university campus and the proposed development was considered to be 20% of the number of students, as per the traffic assessment. The overall CHEC campus patronage is provided in Table 5.3.

Table 5.3: CHEC Campus Patronage

Establishment	Students EFT	Staff EFT
TAFE	1453	123
School	511	48
University	649	129.8
Proposed Development	155	31

According to the previous McLaren traffic impact assessment, peak time parking surveys of the CHEC campus indicated 25% of the total number of EFT students were on site at any one time typically. A rate of one (1) space / 10 Year 12 students and one (1) space / staff is proposed for the school land use in lieu of additional parking assessments of the school exclusive of the other land uses. The school demand considers 50% of students are attending Year 12, resulting in one (1) space / 20 students (i.e. 0.05 spaces / student). This school parking rate is consistent with the rate provided by other NSW councils. The parking demand for the TAFE and university has been calculated on a first-principles basis (i.e. number students EFT x proportion on site x proportion travel by car = demand).

Table 5.4: CHEC Campus Parking Demand

Patron	Establishment	Quantity (EFT)	On-Site Rate	Driver Mode Share	Parking Demand
	TAFE	1453	25%	50%	182
Students	School	511	1 space	20 students	26
Students	University	649	25%	76%	124
	Development	155	25%	76%	30
	TAFE	123	100%	92%	113
Croff	School	48	1 spa	ace / staff	48
Staff	University	129.8	100%	92%	119
	Development	31	100%	92%	29
				Total	671

In a previous letter prepared by McLaren Traffic Engineering for SCU, dated 2nd September 2010, parking survey results identified a total of 858 parking spaces on site. Based on a review of Google Streetview, which shows 2008 and 2015 imagery, and 2018 NearMap imagery, no additional car parks or parking areas appear to have been constructed since those proposed as a part of the 2010 McLaren letter. However, given the 2018 parking surveys indicated that 921 spaces presently exist at the CHEC, this number is adopted given it is has been confirmed in the field. With 26 spaces proposed as part of this development, there would be therefore, a surplus of 276 spaces upon completion. This letter is provided in Appendix H.

5.4 REVISED PARKING ASSESSMENT

The Coffs Harbour Development Control Plan (DCP) does not specify a particular parking rate for educational establishments, therefore the parking requirement for this development has been determined based on the results of the parking surveys, in particular the typical day survey.

The 2018 parking survey results indicate that the maximum car parking demand for the CHEC under typical daily operations is 669 spaces (610 existing and 59 development. This demonstrates that the car parking demand previously calculated (i.e. 671 spaces) based on the student/staff EFT numbers, mode share and other inferences, is overly-conservative of the demands of typical daily operations. As such, the existing car parking supply, with the addition of the 26 spaces to be provided as part of the proposed development, is sufficient to cater for the overall parking demand of the CHEC.

5.5 BICYCLE PARKING

The bicycle parking requirement and provision for the proposed development as per Austroads *Cycling Aspects of Austroads Guide* is shown in Table 5.5.

Table 5.5: Bicycle Parking Provision

Land Use	Required Rate	Quantity	Requirement	Provision
University	2 space / 100 students EFT	155 students EFT	4	10

Ten (10) bicycle spaces are proposed as part of this development, which exceeds Austroads requirements by six (6) spaces.

6. ACCESS AND SERVICING ASSESSMENT

6.1 PARKING LAYOUT

The parking access and layout has been assessed as per Council and AS2890.1 requirements, with comments as follows:

- general parking bay dimensions are provided at a minimum of 2.6m wide by 5.4m long with an aisle width of at least 5.8m as per AS2890.1 requirements for Class 3 users;
- PWD parking bay and shared area dimensions are provided at a minimum of 2.4m wide by 5.4m long as per AS2890.6 requirements; and
- the queueing area length is approximately 100m from the proposed car park to the existing south-west access point within the main car park, which exceeds AS2890.1 requirements.

Swept paths provided in Appendix I show the ability for a B99 vehicle to ingress, manoeuvre and egress the site.

6.2 Servicing and Refuse Collection

The largest service vehicle used on the CHEC is a Ford Ranger (i.e. a B99 design vehicle). The swept paths provided in Appendix I show the ability for a B99 vehicle to ingress, manoeuvre and egress the site.

A swept path assessment was undertaken to ensure that a 10.2m front-loading RCV can adequately manoeuvre the site. The swept paths provided in Appendix I show the ability for the RCV to ingress the site in forward gear, access the bin and egress the site in forward gear.

Additionally, a swept path assessment was undertaken to ensure that a firefighting appliance (i.e. Category 1 Tanker Medium Rigid Vehicle – equivalent of an 8.8m medium rigid vehicle (MRV)) can adequately manoeuvre the site. The swept paths provided in Appendix I show the ability for the firefighting appliance to ingress the site in forward gear, manoeuvre through the site and egress the site in forward gear. This is acknowledged as the larger RCV vehicle can perform the same manoeuvres. The car park layout provides a 'loop road' function' which allows for a fire fighting appliance to circulate in anti-clockwise direction.

7. CONCLUSION

The key findings of this traffic impact assessment for the proposed SCU Coffs Harbour Allied Health Building are as follows:

- the development is expected to generate 25 AM peak trips and three (3) PM peak trips;
- SIDRA results indicate no upgrades are required before the ultimate year (2029) in order to maintain
 the operability of the Hogbin Drive / Stadium Drive / Doug Knight Drive roundabout in both the
 background and design traffic scenarios;
- sensitivity analysis indicates the Hogbin Drive / Stadium Drive / Doug Knight Drive roundabout can support a maximum background traffic growth rate of 3.5% p.a. compounding for 10 years postopening;
- parking surveys indicate that the existing car parking supply, with the addition of the 26 spaces to be
 provided as part of the proposed development, is sufficient to cater for the overall parking demand of
 the CHEC;
- a total of ten (10) bicycle spaces are proposed as part of this development, which exceeds Austroads requirements by six (6) spaces;
- the proposed car park layout meets Council and AS2890 requirements; and
- the swept paths demonstrate the ability for a 10.2m front-loading RCV to ingress the site in forward gear, access the bin and egress the site in forward gear; and
- the swept paths demonstrate the ability for the 8.8m firefighting appliance to ingress the site in forward gear, manoeuvre through the site and egress the site in forward gear.

Based on the above assessment we conclude that there are no significant traffic or transport impacts associated with the proposed development that would preclude its approval and relevant conditioning.

APPENDIX A

DETAILED DEVELOPMENT PLANS

APPENDIX B

TDC 2012 TRAFFIC SURVEY SUMMARY

Site ID: N/A

Location: Weather: Hogbin Dr & Stadium Dr

Fine

Suburb: Coffs Harbour

Duration: 7:00am to 10:00am (Thursday) & 3:00pm to 6:00pm (Wednesday) Wednesday, 28 November 2012 & Thursday, 29 November 2012 Day/Date:

AM Peak 09:00 (hour ending) PM Peak 16:30 (hour ending)

Traffic Control: Roundabout

HOME

						Нод	bin Dr	(South	bound))											D	oug Kr	night D	r (West	bound))										H	logbin C	r (Norti	hbound))										Sta	idium Di	r (Eastbo	ound)						-	Pedestria	ins
TIME		Moveme (Left Tu				vement hrough				rement : ht Turn				ment 3a Turn)	1		Mover (Left	ment 4 Turn)			Moven (Thro				Movem (Right 1				vemen (U Turn				ment 7 t Turn)			loveme (Throu		Mov	vement !	9 urn)	(Right	Movem	ent 9a Turn	1)	(U		nent 10 Turn)			vement 'hrough			Moveme (Right		Mov	vement 1	12a 'urn)	(U	А	В	C D
15 MINUTE PERIOD ENDING	Cars, Utities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists Care Utiline &	Matarayales	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Cars, Utities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Motorcycles	Light Indoos	Cyclists	Cars, Utilities & Motorcycles	Light Thucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks Cyclists	Cars, Utilities &	Mataroyates Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cars, Utities &	Light Trucks	Heavy Trucks	Cyclists Cars. Ulities &	Motorcycles inter Tarcics	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cars, Utilities &	Motorcycles Light Trucks	Heavy Trucks	Cyclists	North	East	South
1 7:15 AM 2 7:30 AM 3 7:45 AM	3 11	0	0	0	69 87	2 0	0	28 36	1	1	0	0	0	0	0	0 2	0	0	0	0	0	0	0	1 1	0	0	0	0	0 0	0 0	14 12	0	1	0	87 107 144	3 6	2 (0 1	0	0	0	0	0	0	0 22	0	0	0	4 (0 0	1	11	3	1	0 0	0	0	0	2	0	0 0
4 8:00 AM 5 8:15 AM	35 33	0	0	1 0	118	0 0	0	44 55	2	0	0	0	0	0	0	1 2	0	0 2	0 21	6 2	0	0	0	2 4	0	1 0	0	0	0 0	0 0	25 34	0 3	0	0 2	170	4	0 1	8	0	0	0	0	0	0	0 44	2	0	0	8 (0 0	0	7	2	0	0 0	0 0	0	0	0	9	0 0
6 8:30 AM 7 8:45 AM 8 9:00 AM	41 57	2	1 4	0 .	140	1 4	0	50 31	4	0	0	0	0	0	0	4	0	5	5	7 9	2	0	0	6	0	0	0	0	0 0	0 0	29 26	2	6	0	240 249 240	6	3 0	30	0 1	3	0	0	0	0	0 91 0 77	1 1	0	0 :	17 (33 (0 1	0	27 31	1	1	0 0	0	0	0	0	0	0 0
9 9:15 AM 10 9:30 AM	38 25	0	1 0	0	106	1 1	0	31 39	1 4	0	0	0	0	0	0	6 2	0	1 0	1 1	4 3	0	0	0	16	0	1 3	0	0	0 0	0 0	30 24	4	0	0	160 149	2	1 0	14	0	1 0	0	0	0	0	0 74	2 2	0	0	18 1	1 3	0	20	1 2	1 3	0 0	0 0	0	0	0	0	0 0
11 9:45 AM 12 10:00 AM	24 19	0	1	0	114 136	1 0	0	35 49	3 2	0	0	0	0	0	0	12 5	0	1 0	3 4	8 10	0	1 0	0 2	9	1 0	0	0	0	0 (0 0	21 22	3 5	0 2	-	163 141	1 2	0 0) 14	0 0	1 0	0	0	0	0	0 46 0 27	3	0	0	12 1	1 1	0	24 21	0	0	0 0	0	0	0	0	0	0 0
3HR Total	362		-		1373	18	٥	482	25			0	0		0	4		=	38	61	2		2	ø			٥				278	26	25	40	2032	6	-	138		1	0	0			0.49	16			\$	4 9		2		12				0			0 0
Peak Hour Total	86	2	7	0	547	9	0	171	6	-	0	0	0	0	0	16	-	80	83	30	2	3	0	21	0	-	0	0	0	0	Ξ	9	16	2	15	\$	s 0	25	-	80	0	0	0	2 0	317	4	2	- 1	8 0	-	2	9	4	6	0	٥	0	0	0	0	0 0

	_																	_							_											т –																т-						٠.														
							Hog	DIN D	r (Sou	ithbot	una)														Doug	Knig	ht Dr (westb	ouna)													н	gbin D	(Norti	hbound	a)												Sta	aium L	or (Eas	tboun	3)								Pedes	strians	
TIME			ement 1				ement				Movem				Move					lovem				Move					oveme				Mover		3			ement				/emen		Mov	vement		(Rig	ght Mc	vemen			(U		ement 1			Move					emen		M	ovemer			(U	Α .	В	С	D.
		(Left	t Turn)			(П	rough) .		. ((Right 1	Turn)			. (U	Turn)			. (Left T	urn)			(Thi	ough) .		(F	tight T	urn)			(U 1	urn)			(Let	ft Turn) .		. (Т	hrougi) .			Turn)				Turn)			(Le	ft Turn)) .		(Thi	rough)	١.		(Ri	ght Tu	rn)			Turn)) .		^		·	
15 MINUTE PERIOD ENDING	Cars, Utilities & Motorcycles	ight Trucks	Heavy Trucks	Cyclists	Cars, Utilities &	Light Trucks	Heavy Trucks	Confine	Sars Utilities &	Motorcycles	Light Trucks	Heavy Trucks	Sydists	Cars, Utilities & Motorcycles	-ight Trucks	Heavy Trucks	Ovdists	Cars. Utilities &	Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	ight Trucks	Heavy Trucks	Profine	Cars. Utilities &	Motorcycles	-ight Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	ight Trucks	Heavy Trucks	Sydists	Cars, Utilities & Motorcycles	-ight Trucks	Heavy Trucks	Cyclists	Cars, Utilities &	ight Tacks	deave Tracks	Cyclists	Cars, Utilities &	violatoyaes Light Trucks	Heavy Trucks	Ovdists	Cars, Utilities &	Motorcycles ight Trucks	dance Tracks	Heavy Irucks Cyclists	Cars, Utilities &	ight Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	-ight Trucks	Heavy Trucks	Cyclists	Cars, Utilities &	violar cycles ight Trucks	denote Transfer	out of the	Cars. Utilities &	Motorcycles	ingiri indices	leavy Trucks	Sydists	Yorth	East	South	Vest
1 3:15 PM	10	0	1	0	149	5	2		0	56	4	0	0	0	0	0	0		12	0	2	1	13	0	0		0	27	0	1	0	0	0	0	0	19	5	0	0	16	0 1	- 3	0	7	0	2	2 0	0	0 0	0 (0 0	41	2	1	0	1	0	1	0	3	1 0		5	0	0	0	0	0	0	0	0	0
2 3:30 PM	13	0	0	0	162	0	- 1		0	41	4	3	0	0	0	0	0		14	0	0	0	12	0	0		0	22	0	3	0	0	0	0	0	55	2	7	1	13			0	20	0	4	0	0	0 0	0 (0 0	46	1	0	0	8	0	0	0	25	9 0		7	0	0	0	0	0	0	0	0	0
3 3:45 PM	13	0	2	0	187	2	0	- 1	0	64	2	3	0	0	0	0	0		13	0	1	3	6	0	0		0	19	0	1	0	0	0	0	0	34	0	2	0	18		1	0	9	0	3	3 0	0	0 0	0 (0 0	49	4	0	- 1	4	0	0	0	33	3 2		1 (0	0	0	0	0	0	0	0	0
4 4:00 PM	10	0	2	0	154	4	2	- 1	0	57	3	0	0	0	0	0	0		3	0	0	3	10	0	0		0	22	0	0	0	0	0	0	0	18	0	2	0	14		- 2	0	6	0	0	0	0	0 0	0 (0 0	51	2	0	0	4	0	- 1	- 1	2	1 2	-	0	0	0	0	0	0	0	0	0	0
5 4:15 PM	8	0	2	0	161	5	1		0	57	1	0	0	0	0	0	0	- 1 :	22	0	1	0	25	0	2		0	41	0	3	1	0	0	0	0	21	0	0	0	14			0	7	0	1	0	0	0 0	0 (0 0	54	1	0	0	8	0	- 1	0	19	9 1	- 1	0	0	0	0	0	0	0	0	0	0
6 4:30 PM	13	0	1	0	210	2	0		0	88	4	0	0	0	0	0	0	- 11	13	0	2	0	9	0	0		1	22	0	1	0	0	0	0	0	17	0	- 1	0	11	٠,	- 0	0	6	0	0	0	0	0 0	0 (0 0	52	4	1	0	6	0	- 1	0	31	1 1	-	0	0	0	0	0	0	0	0	0	0
7 4:45 PM	6	0	0	0	198	2	0		0	49	2	1	0	0	0	0	0	- 11	10	0	0	0	7	0	0		1 :	26	0	0	0	0	0	0	0	25	0	0	0	13			0	2	0	0	0	0	0 0	0 (0 0	54	2	0	0	1	0	0	0	33	3 0		1	1	0	0	0	0	0	0	0	0
8 5:00 PM	10	0	0	0	151	2	0		0	51	2	1	0	0	0	0	0		8	0	0	0	6	0	- 1		0	15	0	0	0	0	0	0	0	12	0	0	1	11			0	8	0	1	0	0	0 0	0 (0 0	40	2	0	- 1	3	0	- 1	- 1	2	1 1	- 1	0	0	0	0	0	0	0	0	0	0
9 5:15 PM	8	0	0	0	188	3	3		0	65	1	0	0	0	0	0	0	- 11	15	0	1	8	10	0	- 1		0	18	0	0	0	0	0	0	0	18	0	0	0	12			0	10	0	1	0	0	0 0	0 (0 0	60	2	0	0	- 1	0	0	5	33	2 1		1 1	0	0	0	0	0	0	0	0	0
10 5:30 PM	9	1	0	0	200	3	0		0	54	3	0	0	0	0	0	0		9	0	0	2	15	0	0		0	14	0	0	0	0	0	0	0	13	0	0	0	13	9 1	- 0	0	5	0	0	0	0	0 0	0 (0 0	35	0	0	0	4	0	0	- 1	23	3 0	- 1	0	0	0	0	0	0	0	0	0	0
11 5:45 PM	18	0	0	0	172	1	2		0	48	1	0	0	0	0	0	0		5	0	1	5	5	0	0		0	12	0	0	0	0	0	0	0	29	0	0	0	10	6 (- 0	0	6	0	1	0	0	0 0	0 (0 0	29	1	0	0	5	0	- 1	0	10	3 0		1 1	0	0	0	0	0	0	1	0	0
12 6:00 PM	6	0	0	0	155	0	1		0	60	1	0	0	0	0	0	0		4	0	0	4	9	0	0		0	4	0	0	0	0	0	0	0	23	0	0	1	9		- 0	0	6	0	0	0	0	0 0	0 (0 0	30	0	0	0	7	0	0	0	17	7 1	- 1	0	1	0	0	0	0	0	0	0	0
3HR Total	124	1	8	0	2085	29	12	0	0	690	28	8	0	0	0	0	0	****	128	0	8	26	127	0	4	,		242	0	9	1	0	0	0	0	284	7	12	3	1596	19	11	0	92	0	13	0	9	0	,	0	541	21	2	2	52	0	9	8	303	9	16		,		,	0	0	0	1	0	0
Peak Hour Tota	1 2	0	7	0	712	13	3	0	9	266	10	60	0	0	0	0	0	-	io.	0	4	9	8	0	2	-	-	3	0	9	+	0	0	0	0	8	0	10	0	589	10	67	0	28	0	4	0	> 0	0	0	0 0	206	Ξ	1	,	22	0	3	-	2	9	-		,	9 0	,	0 (0	0	0	0	0

APPENDIX C

TDC 2018 TRAFFIC SURVEY SUMMARY

		1 Hogbin Dr & S	Stadium Dr, (Coffs Harbo	ur							Hogt	bin Dr SB				W	*																																																							I
		2-May-2018										_	٠,																																																												Æ
Perio	od 1 Time:	7:00 AM	to 9:	MA 00					Stadium	n Dr EB			_		Do	ug Knigh	t Dr WB																																																								
Period 1 P	Weather: F	8:00 AM	to 9:	00 AM								Hogb	oin Dr NB				,	Fraffic Dat	D(a & Cont																																																						
TOTALS AND PEAKS																																																																									_
Period 1 Total	265	1	0	1	770 15	12	۱ ۵ ا	E27	10	2	0	0	0	0	0	0	17	0	0	0	27	Λ.	6	4	40	n	7	0	0	0	1 0	1	1	215	10	14		2 1	250	20	6	0	105	n	11	0	10	0	2	0	0	416	14	2	1 1	0 1			121	0 1		1 0	0	0	1 0	I 0	1 0	,	4176	1621	118	1662	765
Period 1 Peak Hr		1	9	0	440 10	12	0	259	6	2	0	0	0	0	0	0	16	0	8	0	22	0	5	1	39	0	5	0	0	0	0	0	0	108	13	13		1	20	11	6	0	79	0	8	0	8	0	2	0	0	299	6	2 1	0 1	32 1) 88						0)	2549	946	96	969	538
																																																																									Ä
	Hogbin Dr SB	Hogbin Dr SB	Hogbin Dr SB	Hogbin Dr SB	Hogbin Dr SB Hogbin Dr SB	Hogbin Dr SB	Hogbin Dr SB	Hogbin Dr	Hogbin Dr SB	Hogbin Dr SB	Hogbin Dr SB	Hogbin Dr.	Hogbin Dr S	Hogbin Dr SB	Hogbin Dr SB	Hogbin Dr SB	Doug Knight Dr WB	Hogbin Dr NB	Hogbin Dr NB	Hogbin Dr NB	and the second	Hogbin Dr NB	Hogbin Dr NB	Hogbin Dr NB	Hogbin Dr NB	Hogbin Dr NB	Hogbin Dr NB	Hogbin Dr NB	Hogbin Dr NB	Hogbin Dr NB	Hogbin Dr NB	Hogbin Dr NB	Hogbin Dr NB	Hogbin Dr NB	Hogbin Dr NB	Stadium Dr EB	Stadium Dr EB	Stadium Dr EB	Stadium Dr EB	Stadium Dy FR	and miles	and an interest	Stadium Dr EB	Stadium Dr. II	Stadium Dr EB	Stadium Dr EB	Stadium Dr EB	Stadium Dr EB	Stadium Dr EB	Stadium Dr EB	Stadium Dr EB		GRAND TOTAL	Hogbin Dr SB	Doug Knight Dr WB	Hogbin Dr NB	Stadium Dr EB																
	Left	Left	Left	Left Th	rough Throu	gh Through	Through	Right	Right	Right	Right L	I-turn U	J-turn U	-turn U	J-turn C	ross 1	Left	Left	Left	Left T	hrough T	hrough T	hrough T	hrough	Right I	Right	Right	Right	U-turn	U-turn	U-turn	1 U-tur	n Cross	1 Left	Left	Lef	ft Le	Left Th	ough Th	rough Ti	hrough T	hrough	Right	Right	Right	Right	U-turn	U-turn	U-turn	U-turn	Cross 1	Left	.eft L	eft Le	eft Thro	ough Thro	ough Thro	ugh Thro	ugh Rigi	ht Rig	ht Righ	t Righ	t U-turi	n U-tu	m U-tur	rn U-tur	turn Cross	ss 1		TOTAL	TOTAL 1	TOTAL	JTAL
Time Starting	light Vehicles	rucks	gnses	Skycles on Road	light Vehicles frucks	gnses	3kycles on Road	light Vehicles	rucks	Suses	Bicycles on Road	Jght Vehicles	rucks	gases	3kycles on Road	edestrians	Jght Vehicles	rucks	Juses	3kycles on Road	ight Vehicles	rucks	Juses	3kycles on Road	Jght Vehicles	rucks	Juses	3kycles on Road	ight Vehicles	r ucks	Juses	3kycles on Road	edestrians	light Vehicles	r ucks	Juses		Blcycles on Road	light Vehicles	rucks	anses	skycles on Road	lght Vehicles	rucks	Juses	3kycles on Road	Jight Vehicles	r ucks	Juses	skycles on Road	edestrians	ight Vehicles	rucks	sasses	Skycles on Road	Garage Constitution of the	200	200	light Vehicles	33	Buses	3kycles on Road	ight Vehicles	rucks	Suses	Sicycles on Road	Pedestrians		TOTALS	All Classes	All Classes	All Classes	All Classes
07:00	4	0	0	0	58 2	0	0	34	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	24	0	0		0	85	4	0	0	0	0	1	0	0	0	0	0	0	8	0	1 (0	1 0) () 1	4	-	0	0	0	0	0	0	. 0				2	114	15
07:15	12	0	0	0	74 1	0	0	53	1	0	0	0	0	0	0	0	0	0	0	0	2	0	0	1	2	0	0	0	0	0	0	0	0	11	1	0	- 2	1	10	4	0	0	2	0	0	0	0	0	0	0	0	24	2	0 (0 !	5 0) () (12	! 4	0	0	0	0	0				322		5	129	47
07:30	12	0	0	1	94 0	0	0	92	0	1	0	0	0	0	0	0	1	0	1	0	1	0	1	0	4	0	1	0	0	0	0	0	0	31	2	0	-	0	75	4	0	0	11	0	2	0	2	0	0	0	0	31	1	0	1 :	3 0) () (12	3	0	0	0	0	0	0				200	9	227	<i>5</i> 6
07:45	30	0	0	0	112 2	0	0	99	2	0	0	0	0	0	0	0	0	0	0	0	2	0	0	1	3	0	0	0	0	0	0	0	0	41	3	1	- 0	0	60	5	0	0	13	0	0	0	0	0	0	0	0	54	5	0 (0 2	2 0) () (22		1	0	0	0	0	0			583	245	6	223	.09
08:00	27	0	1	0	128 2	3	0	86	1	1	0	0	0	0	0	0	1	0	1	0	4	0	0	0	6	0	1	0	0	0	0	0	0	36	3	2	- 0	0	85	1	3	0	7	0	1	0	0	0	0	0	0	75	0	0 (0 1	4 0) () (26		0	0	0	0		0	_		615	249	13	238	.15
08:15	49	0	6	0		3	-		3	0	0	0	0	0	0	0	3	0	6	0	1	0	1	1	13	0	0	0	0	0	0	0	0	27	4	6	- 1	1	104	1	2	0	15	0	2	0	1	0	2	0	0	90	3	2 (0 2	4 0) 1		21	. 2	2	0	0	0		0					25		.45
08:30	72	0			97 4					1					0	0	1	0	1												0			21																0		72			0 4										0						20		
08:45	59	1	0	0	108 1	0	0	38	0	0	0	0	0	0	0	0	11	0	0	0	11	0	2	0	12	0	2	0	0	0	0	0	0	24	4	0		0	32	4	0	0	37	0	2	0	3	0	0	0	0	62	1	0 (0 5	1 1	1 () (15	4	0	0	0	0	0	0	/ 0		585	207	38	206	.34

		te ID: 1	gbin Dr &	Candina	Dr. Criffe	Unahawa										Но	gbin Dr	SB						***).																																																																													
	Loca				DI, COIIS	i lai boui																	_	\$																																																																														
		Date: 2-M	May-2018														-																																																																																					
	Period 2	Time: 3:	:00 PM	to	6:00 P	м						Stadii	um Dr EB	3		_		_			Doug K	inight D	Dr WB																																																																															
		ther: Fine	e													-	т																																																																																					
																								44	- T	j	>																																																																											
P	riod 2 Peak	Hour: 4:	:30 PM	to	5:30 P	M										Но	gbin Dr	NB						1	- 11	$\boldsymbol{\nu}$																																																																												
																								Traffic	c Data	1 & Co	ontrol	1																																																																										
TOTALS AND PEA	S																																																																																																		_	_	_	_
Perio	2 Total	37	0 1	7	1	10	10 l o		7	n	534	6	5	Ιn		3	n	Ιn		0	1	2	21	0	1	11	I n		29		n I	4		2	65	In	n I	7	Ι ο		n	I n	1	0	0		2	-	180	6		4		n I	923		3	10		n	11		n		6	0	1 2		0		n I	n		n	557	T 0		4	0	14	n	6	1	21	24	2	6	1			n I	n	l n		0	39	267	1698	130	a 1	1145	88
	Peak Hr	7	0	0	0	38			_	0 :	195	0	1	0		0	0	0		0	0	-	4	0															0										60		_		_					2																					0				_	1	34	1	0	1	-		0	0	0		0	13	352	596	139 42	31	365	34'
																																																																																																				آلان		
																							a	8	Ι.				8	Τ.		8	Ι.	8	8	_		8	8		8	8			8		8																																																							
																						1 3	š	> >	;	٤	\$		5	3	ž	> >		5	5	\$:	ž	\$		5	\$	[]	5	5		5																												_	_	.	_	_	89		_		١.	,	e		_			_	_	_	١.	_	Ι.	_				- 1	
		8	88	8	88	5	8	3	8	2	8 A	SB.	88	8		3	88	8	}	88	88	1	ž l	Ę		夏	1 %		Ę	1 2	副	Ę	1 3	ž.	Ę	=	Ē	Ę	1 5		Ę	1 5		Ę	Ę		Ę		2	2		£		£	£		£	£		£	£		E N		원 집	£	g E		£	1	£	2	1 5	£	= =	1 2		E	<u> </u>	<u>=</u>	=	=	1 =	5		<u> </u>	i E] E	1 2		Ē	i i	E	1 5	Ē.		<u> </u>	88	. Ę.	. *	2	1 2
1		a	۰ ۱	<u> </u>	ă	1 9		:	ă	2	٩ ١	ă	ă	٥	1 9	≘	<u>ء</u>	ء ا	: I	١	<u>ء</u>	2	ž.	ž		ž	2		ž	1 5	ž	ž	1	ž	Ř	1 2	ž	ž	ž		ž	5	Ē	ž l	ŝ		ŝ		2 I	<u> </u>		-	- 1 '	ا ۽	٥		ă	٥		۵	ă		ē	1 '	<u>ا</u> ء	ă	à		ğ	1 5	<u>ء</u>	2	1 5	١٩	Ę	Ę		Ę	Ę	Ę	Ę	Ę	Ę	1		ξ	Ę	Ę	1		Ē	Ę	Ę		Ę		<u> </u>	<u>ء</u>	<u> </u>	'	اي	=
1		.⊆																																																																																							- 1 4		₩	#	1 4	1 4	# 1					- 2	<u>a</u> 1	1 8
		logbin	logbir	logbir	logbii	le hi	, 2		ng So	1080	logbir	logbir	logbi	lidgo	1 3	0 0	qgo	98		qgo	90	3	no l	ñ		no	1 8		ō	3	ã	ño		on g	900	8	9 0	9 no	9 70		g no	l no	8	gno.	Bno		Bno	•	id go	idgo		logbi		ig go	logbir		logbi	legbi		1 g	q	.	qBo		80	d go	l dao	١.	dgo	1	200	log	1 3	180 E	2	1 2		\$	3	2	ğ	E E	ta di	1 3	3	ta di	ğ	1 2	1 3		2	š	ğ	1 3	3		≨	8	no	_ l _ ı	<u> </u>	
		년 왕 Left	ig So Left	iā 80 £ Left	ig So Left	Thro	ugh Thro	ugh Th	ough Th	Dugh R	मू भू light	नु श्रुष्ट Right	Right	Righ	t U-t	turn	U-turn	문 U-tu	urn U	요 보 J-turn	Cross:	1 Le	eft	Left	L	left	Left	ft Thr	hrough	th Thro	rough T	Through	gh Thre	rough	Right	Rig	ght	Right	Righ	nt U	J-turn	U-tu	um U	J-turn	U-tur	m C	Cross	51 L	표 호 Left	Eeft	t	Eeft	L	न्तु भू eft	표 원 hroug	gh Th	Frough	표 원 Throu	gh Thi	E rough	Rigi	ht i	Right	Ri	표 원 ight	Right	U-tu	ırn t	문 U-turn	n U-1	문 turn	문 U-tur	n Cro	oss 1	Eeft	Lef	ft	Eeft	Left 1	Ehrough	Through	Throu	th Throu	ugh Rij	ght R	Right	Right	Right	t U-ti	ım U-	tum U	J-turn	U-tur	ım Cro	ross 1	-	8	문 TOTAL	TOTAL	L TO	호)TAL	TOTA
		ug 80 Eeft	ig 80 E Left	ig 80 H Left	Left	Thro	ugh Thro	ugh Th	ough Th	bugh R	함 인 tight	मुं अध्य Right	Right	Righ	t U-t	turn	U-turn	U-tu	um U	J-tum	Cross:	1 Le	eft .	Left	: Li	left	Left	ft Thr	hrough	th Thro	rough T	Through	gh Thro	rough	Right	Rig	ght	Right	Righ	ht U	J-turn	U-tu	urn U	J-turn	U-tur	m C	Cross	51 L	표 일 Left	Eeft	t	Eeft	L	eft	표 알 hroug	gh Th	를 알 irough	Throu	gh Thi	Tough	Rigi	ht I	Right	Ri	ight	Right	U-tı	ırn l	문 U-turn	n U-1	문 turn	U-tur	n Cro	oss 1	Left	Lef	ft	Left	Left 1	Through	Through	Throu	th Throu	ugh Ri	ght R	Right	Right	Right	t U-ti	ım U-	turn U	ਤੁੱ J-turn	U-tur	ırn Cro	ross 1		88	¥ TOTAL	TOTAL	uL TO	ਉ OTAL	TOTA
		tht Vehicles and Hogbin	Left Lospin	Left ses	ycles on Road and Hogbin	Thro	ugh Thro	ugh Th	ough Th	Dugh R	tht Vehicles dil Hogbir	Right Right	Right ses	ycles on Road application	t U-t	nt Venicles	U-turn	U-tu	urn U	ycles on Road at Hogb	destrians Hogh	1 Le	tht Vehicles and Dour	Left	: Le	Left	ycles on Road Boug	ft The	ht vehicles had bound	th Thro	rough T	Through	gh Thr	ycles on Road and poug	tht Vehicles Doug	Rig	ght	Right	cycles on Road dia Doug	ht U	ht Vehicles unit-Indus	U-tu	um U	J-turn ses	cycles on Road at Doug	m C	Cross	51 L	ht Vehicles and Hogbi	Left syon	t	Left Ses	: L	ycles on Road in Hogbi	ht Vehicles Broud	gh Th	ncks Hoggi	Throu	gh Thi	cycles on Road of Hogbi	tht Vehicles (Size Hogb)	ht I	Right skon	Ri	ight sea	ycles on Road Hogb	n-tr O-tr	irn U	U-turn	n U-1	turn ses	cycles on Road in Hogh	n Cro	oss 1	tht Vehicles Stad	Let Stad	ft	Ses Stad	cycles on Road Stad	tht Vehicles out	Through	Throu	cycles on Road no.	ugh Ri	ght R	Right	Right	cycles on Road Big	t U-tr	um U-	tum U	J-turn	cycles on Road or Star	ırn Cro	destrians Sta		OTALS GRA	Classes TATOT	Classes	AL TO	Classes	TOT
Time Starti	6	Light Vehicles	Trucks 14 Hogbin	Buses	Bicycles on Road	light Vehicles	4		Buses	Bicycles on Road	Light Vehicles	Trucks	Buses	Bicycles on Road on Hogbin	1	Light Vehicles	Trucks	Buses		Bicycles on Road	Pedestrians	1 Le	- Light Vehicles a	Left Pond	t t	non Left	Bicycles on Road ad		Light Vehicles	Terrela	Trucks	Buses		Bicycles on Road	Light Vehicles	Trucks	Irucks	Buses	Bkycles on Road		Light Vehicles	Trucks	e e e e e e e e e e e e e e e e e e e	Buses	Bicycles on Road		Pedestrians		Light Vehicles	Trucks		Buses		Bicycles on Road	Light Vehicles		Trucks	Buses		Bicycles on Road	Light Vehicles	,	Trucks		Buses	Bicycles on Road	Lieht Vehicles		Trucks		Buses	Bicycles on Road		Pedestrians	Light Vehicles	Trucks		Buses	Bicycles on Road	Light Vehicles	Trucks	Buses	Bicycles on Road	1	50111 A SH CAG	Trucks	Buses	Bicycles on Road	Lieht Vehicles		Trucks	Buses	Bicycles on Road		Pedestrians Sta		TOTALS	All Classes	All Classes	AL TO	All Classes	All Classes
15:00	6	Hog piu	Left Hogbin	Buses	O Bicycles on Road Hogbin	90 light Vehicles	3		O Buses	O Bicy cies on Road	96 Light Vehicles	O Trucks	Euses	Bicycles on Road		Light Vehicles	Trucks	O Buses		Bicycles on Road	O Pedestrians	1 Le	eft Pehicles	Left synny	: La	Left 2	O Bicycles on Road 37		O Light Vehicles	300	O Trucks	O Buses		Bicycles on Road	∪ Light Vehicles	0 Trucks	0 Iruos	sasng 2	Bicycles on Road		O Light Vehicles	o Trucks	0	Buses	Bicycles on Road		Cross:		Eft Vehicles	Trucks		Buses		Bicycles on Road	Light Vehicles		Trucks	Through 1		Bicycles on Road	- Light Vehicles	,	O Trucks		1 Buses	O Bicycles on Road	U-tt		Trucks		Buses	Bicycles on Road		O Pedestrians	25 Light Vehicles	O Trucks		sasng 1	Bicycles on Road	O Light Vehicles	Trucks	Buses	Bicycles on Road	1	2001100	O Trucks	o Buses	Bicycles on Road	O lisht Vahicles		O Trucks	O Buses	○ Bicycles on Road		O Pedestrians O Sta	2	8 TOTALS	TOTAL Se SE D IIV	TATOTAL OBSSES 10	AL TO	All Classes and I Nation	TOT.
15:00 15:15	6	right vehicles	o o Trucks	\$959 <u>8</u> 0	O O Bicycles on Road	8 8 8 9 9 9 9	5 (o O O	O Decycles on Koad	36 36	o O Trucks	sesng 1	O O Bicycles on Road		Light Vehicles	Trucks	O Buses		O Bicycles on Road	O Pedestrians	1 Le	nool Left Light Vehicles	Left synnation	: L4	sesng 2	O O Bicycles on Road Table		ο Light Vehicles	o C	O Trucks	O Buses		O O Bkycles on Road	- G Light Vehicles	0 Trucks	0 11008	sesne 2 1	O O Bicycles on Road		○ Clight Vehicles	o o Trucks	0	Buses	O O Bicycles on Road		O O Pedestrians		Light Vehicles	Trucks		sesng 0		O O Bicycles on Road	22 12 13 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16		Sylvacks 0 1	sesng 1		O O Bicycles on Road	1 Light Vehicles	,	O O Trucks		1 Buses	O O Bkycles on Road	1 Lieht Vehicles		Trucks		Buses	Bicycles on Road		O O Pedestrians	32 48	O Trucks		sesng 1	O O Bicycles on Road	□ O Light Vehicles	o Trucks	sesng 0	O O Bicycles on Road	1 2	7	o O Trucks	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	O O Bicycles on Road	O light Vehicles		O Trucks	o o guses	O O Bicycles on Road		O O Pedestrians Sta	2	98 20	TOTAL Se SE D IIV	TOTAL See ID IIV 10 12	AL TO	SSE CI SS	53 76
15:00	8	Light Vehicles	O O Trucks	sesmg 0 2 0	Bicycles on Road	34 49 24 19 8 9	5 (O Buses	O O BKYCHES ON KOND	36 36	o O Trucks	sesng 1	O O Bicycles on Road		Light Vehicles	Trucks	O Buses		O Bicycles on Road	O Pedestrians	1 Le	noo left 1 Light Vehicles 2 2	Left spon_L	: Li	sesng 2	O O Bicycles on Road		ο Light Vehicles	300	O Trucks	O Buses		O O Bkycles on Road	∪ Light Vehicles	0 0	0 0 0	2 1	Bicycles on Road		○ Clight Vehicles	o o Trucks	0	Buses	Bicycles on Road		O O Pedestrians		Light Vehicles	Trucks		sesng 0 2 2		O O O Bicycles on Road	83 72 83		0 1 0	Buses		O O Bicycles on Road	1 Light Vehicles	,	O O Trucks		\$ Brases 1 0 1	O O Bicycles on Road	1 Lieht Vehicles		Trucks		Buses	Bicycles on Road		O O Pedestrians	32 48 60	O Trucks		\$9\$ng 1 0	Bicycles on Road	D Light Vehicles	O O Trucks	\$9\$99 0 1	Bicycles on Road	1 2 2	7 5 9	0 0 1	\$ \$ \$ \$ 3 \$ 1 \$ 2	Bicycles on Road	O light Vehicles		0 O Trucks	o o guses	O O Bicycles on Road		Starians O O O O O O O O O O O	2	98 20 67	TOTAL See Diller 127 138	TOTAL See ID IIV 10 12	AL TO	SSE CI SS	SS All Classes
15:00 15:15 15:30	8	P Light Vehicles	O O Trucks	sesmg 0 2 0	O O Bicycles on Road	\$ 24 24 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 3 3 3	5 (o O O	O O BKYCHES ON KOND	selview vehicles 36 36 37	o O Trucks	sesng 1	O O Bicycles on Road		Light Vehicles	Trucks	O Buses		O Bicycles on Road	O Pedestrians	1 Le	eft Inght Vehicles 2 2	Left Syntage O O O	: La	sesng 2	O O Bicycles on Road		ο Light Vehicles	o C	O Trucks	O Buses		O O Bkycles on Road	5 Light Vehicles	0 0	0 0 0	2 1	O O Bicycles on Road		○ Clight Vehicles	o o Trucks	0	Buses	O O Bicycles on Road		O O Pedestrians		Light Vehicles	Trucks		sesng 0 2 2		O O O Bicycles on Road	83 72 83		0 1 0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		O O Bicycles on Road	1 Light Vehicles	,	O O Trucks		\$ Brases 1 0 1	O O Bicycles on Road	1 Lieht Vehicles		Trucks		Buses	Bicycles on Road		O O Pedestrians	32 48 60	O Trucks		\$9\$ng 1 0	O O Bicycles on Road	D Light Vehicles	O O Trucks	\$9\$99 0 1	O O Bicycles on Road	1 2 2	7 5 9	0 0 1	\$ \$ \$ \$ 3 \$ 1 \$ 2	O O Bicycles on Road	O O O		0 O Trucks	O O O	O O O Bicycles on Road	(Coss 1	2 3 3 3 3	98 20 67 19	127 138 143	10 12 19 12	AL TO	59 29 20 20 20 20 20 20 20 20 20 20 20 20 20	SS All Classes
15:00 15:15 15:30 15:45	6	P Light Vehicles	0 0 0 Trucks	0 2 0 3 2	O O Bicycles on Road	8 8 9 9 9 8	5 (9999 0 0 0 1	DECACES ON KOND	seprendent	o O Trucks	sesng 1	O O Bicycles on Road		Light Vehicles	Trucks	O Buses		O Bicycles on Road	O Pedestrians	1 Le	noo left selpit vehicles 2 2 2 3	Left SSOON J. C.	E La	sesng 2	O O Bicycles on Road		ο Light Vehicles	o C	O Trucks	O Buses		O O Bkycles on Road	5 Light Vehicles	0 0 0	0 14 16 18	2 1	O O Bicycles on Road		○ Clight Vehicles	o o Trucks	0	Buses	O O Bicycles on Road		O O Pedestrians		Light Vehicles	Trucks		sesng 0 2 2		O O O Bicycles on Road	83 72 83		0 1 0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		O O Bicycles on Road	1 Light Vehicles	,	O O Trucks		\$ Brases 1 0 1	O O Bicycles on Road	1 Lieht Vehicles		Trucks		Buses	Bicycles on Road		O O Pedestrians	32 48 60 35	0 0 0 0 0 0 0		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	O O Bicycles on Road	2 C Light Vehicles	O O Trucks	\$9\$99 0 1	O O Bicycles on Road	1 2 2	7 5 9	0 0 1	\$ \$ \$ \$ 3 \$ 1 \$ 2	O O Bicycles on Road	0 0		0 0 0 Trucks	0 0 0 0	O O Bicycles on Road	(O O O O Pedestrians	2 3 3 3 3 3 3	98 20 67 19 39	127 138 143 144 148	10 12 19 12 18	10 10 10 10 10 10 10 10 10 10 10 10 10 1	108 94 109 101 97	SS All Classes
15:00 15:15 15:30 15:45 16:00	g	seprending 4 2 5 2 7	0 0 0 0 Trucks	0 2 0 3 2	O O O Bicycles on Road	8. 9. 9. 9.	3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DECACUSE ON MODERA	36 36 37 45 51 62	0 0 1 1 0	\$ 95mg 1 1 1 0 0 0 0 0 0 0	O O O O Bicycles on Road		1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 89	0 0 0 0		O O O O Bicycles on Road	O O O Pedestrians	1 Le	Sold Sold Sold Sold Sold Sold Sold Sold	0 0 0 0 Trucks		2 1 2 0 3 0	O O O Bkycles on Road		0 Clight Vehicles	()	0 0 0 0 Trucks	989890 0 0 0 0		0 0 Bicycles on Road	5 1 9 6 7 7 5 5 5 5 6 6 7 7 5 6 6 7 7 5 6 6 7 7 5 6 6 7 7 7 7	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 1 1 2 1 0	0 0 0 0 0 0 0 0 0		O O O Light Vehicles	0 0 0 1 1 1 1 1	000000000000000000000000000000000000000	0 0 0 0	O O O Bicycles on Road		O O O O Pedestrians		Light Vehicles	2 1 0 1 0		0 2 2 0 0		O O O O O Bicycles on Road	83 72 83 87 74 88		0 1 0 1 0	1 0 2 1 0		O O O O Bicycles on Road	1 1 1 1 1 1		0 0 0 Trucks		1 0 1 0 1	O O O O O O O O O O O O O O O O O O O	1 0 0 0 0		0 0 0 0 Trucks		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O O O Bkcycles on Road		O O O O O O O O O O O O O O O O O O O	32 48 60 35 53 48	0 0 0 0 0 0		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	O O O O Bicycles on Road	0 Light Vehicles	0 0 0 0	0 1 1 1 1 0	O O Bicycles on Road	1 1 2 2 2 2 2 2	7 5 9 3 2	0 0 1 0 0	3 1 2 0 0	O O O Bicycles on Road	0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	O O O Bicycles on Road		O O O O Pedestrians	2 3 3 3 3 3 3 3	98 20 67 19 39 26	127 138 143 144 148	10 12 19 12 18	AL TO	108 94 109 101 97	SS All Classes
15:00 15:15 15:30 15:45 16:00 16:15 16:30	g	right vehicles	0 0 0 0 Trucks	0 2 0 3 2	O O O Bicycles on Road	8. 9. 9. 9.	3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DECACUSE ON MODERA	36 36 37 45 51 62	0 0 1 1 0	\$ 95mg 1 1 1 0 0 0 0 0 0 0	O O O O Bicycles on Road		1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 89	0 0 0 0		O O O O Bicycles on Road	O O O Pedestrians	1 Le	1 3 2 2 2 3 1 0	0 0 0 0 Trucks		2 1 2 0 3 0	O O O Bkycles on Road		0 Offith Vehicles	()	0 0 0 0 Trucks	989890 0 0 0 0		0 0 Bicycles on Road	5 1 9 6 7 7 5 5 5 5 6 6 7 7 5 6 6 7 7 5 6 6 7 7 5 6 6 7 7 7 7	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 1 1 2 1 0	0 0 0 0 0 0 0 0 0		O O O Light Vehicles	0 0 0 1 1 1 1 1	000000000000000000000000000000000000000	0 0 0 0	O O O Bicycles on Road		O O O O Pedestrians		19 17 20 10 22	2 1 0 1 0		0 2 2 0 0		O O O O O Bicycles on Road	83 72 83 87 74 88		0 1 0 1 0	1 0 2 1 0		O O O O Bicycles on Road	1 1 1 1 1 1		0 0 0 Trucks		1 0 1 0 1	O O O O O O O O O O O O O O O O O O O	1 0 0 0 0		0 0 0 0 Trucks		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O O O Bkcycles on Road		O O O O O O O O O O O O O O O O O O O	32 48 60 35 53 48	0 0 0 0 0 0		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	O O O Bicycles on Road	0 Light Vehicles	0 0 0 0	0 1 1 1 1 0	O O Bicycles on Road	1 1 2 2 2 2 2 2	7 5 9 3 2	0 0 1 0 0	3 1 2 0 0	O O O Bicycles on Road	0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	O O O Bkcycles on Road		O O O O Pedestrians	2 3 3 3 3 3 3 3 3 3	98 20 67 19 39 26 33	127 138 143 144 148 145 117 126	10 12 19 12 18 10 16 6	AL TO	108 94 109 101 97 101 90 89	53 76 96 62 76 70 110
15:00 15:15 15:30 15:45 16:00 16:15 16:30 16:45	g	4 2 5 5 2 7 7 3 3 3 1 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 0 3 2 0 0	0 0 0 0 0 0 0 0 0 0 0 0	88 99 99 90 88 77 88	3 5 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5		9999 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1	BEOMEO SANGARAN OF THE SANGARA	36 36 37 45 51 62 33 41 62	0 0 1 1 0 2 0 0	\$9500 1 1 0 0 0 0	O O O O Bicycles on Road		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0		O O O O Bicycles on Road	0 0 0 0 0 0 0	1 Le	Representation Repr	0 0 0 0 Trucks		2 1 2 0 3 0 0 1 1	O O Bicycles on Road		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 0	0 0 0 0 2 0 1		0 Bicycles on Road	5 1 1 9 6 7 5 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 1 1 2 1 0 0	0 0 0 0 0 0 0 0 0 0		O O O Cleht Vehicles	0 0 0 0 0 Trucks		0 0 0 0 0 0	O O O O O O O O O O O O O O O O O O O		O O O O O O O O O O O O O O O O O O O		19 17 20 10 22 11 11 18 15	2 1 0 1 0 0 0		9999 0 2 2 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	83 72 83 87 74 88 75 70 88		0 1 0 1 0 0 1 0	1 0 2 1 0 1 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 2 2 1 0 0		0 0 0 0 0 0 0 0 0		9508 1 0 1 0 1 0	O O O O O O O O O O O O O O O O O O O	1 0 0 0 0 0		0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O O O O O O O O O O O O O O O O O O O		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	32 48 60 35 53 48 67 43	0 0 0 0 0 0		1 0 0 0 0 0 2 0 0	O O O Bicycles on Road	2 0 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0	0 0 1 1 1 1 0 0	O O O O O O O O O O O O O O O O O O O	1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	55 99 3 2 0 2 3 8	0 0 0 1 0 0 1 0 0	3 1 2 0 0 0 0 0	0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000		0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	O O O Bkcycles on Road		O O O O O O O Pedestrians	2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	98 20 67 19 39 26 33 00 82	127 138 143 144 148 145 117 126 169	10 12 19 12 18 10 16 6 14	AL TO	108 94 109 101 97 101 90 89	53 76 96 62 76 110 79 93
15:00 15:15 15:30 15:45 16:00 16:15 16:30 16:45 17:00	8	4 2 5 2 7 3 3 3 1 2 1	0 0 0 0 0 0 0 0	999000 0 2 0 3 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	88 99 99 88 77 88 10	3 3 5 5 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5		9999 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 1 2 0 0 1 1 1 2 0 0 1 1 1 2 0 0 1 1 1 2 0 0 1 1 1 2 0 0 1 1 1 2 0 0 1 1 1 1	BEOMEO SANDANA O O O O O O O O O O O O O O O O O O	36 36 37 45 51 62 33 41 62 59	0 0 1 1 0 2 0 0	\$9500 1 1 0 0 0 0	O O O O Bicycles on Road		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0		O O O O Bicycles on Road	0 0 0 0 0 0 0	1 Le	Representation Repr	0 0 0 0 Trucks		2 1 2 0 3 0 0 1 1	O O O Bicycles on Road		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0	0 0 0 0 0 2 0 1 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 1 9 6 7 5 9 5 5 4	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 1 1 2 1 0 0	0 0 0 0 0 0 0 0 0 0		O O O Cleht Vehicles	0 0 0 0 0 Trucks		0 0 0 0 0 0	O O O O O O O O O O O O O O O O O O O		O O O O O O O O O O O O O O O O O O O		19 17 20 10 22 11 11 18 15	2 1 0 1 0 0 0 0		99999 0 2 2 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	83 72 83 87 74 88 75 70 88 62		0 1 0 1 0 0 1 0 0	1 0 2 1 0 1 0 0		O O O O O O O O O Bkycles on Road	1 1 1 2 2 1 0 0		0 0 0 0 0 0 0 0		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	O O O O O O O O O O O O O O O O O O O	1 0 0 0 0 0		0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O O O O O O O O O O O O O O O O O O O		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	32 48 60 35 53 48 67 43 52 44	0 0 0 0 0 0		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	O O O Bicycles on Road	0 Clight Vehicles	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 1 0 0	O O O O O O O O O O O O O O O O O O O	1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	7 7 5 9 3 3 2 0 0 2 3 3 8	0 0 0 1 0 0 1 0 0	3 1 2 0 0 0 0 0	0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000		0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		O O O O O O Pedestrians	2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	98 20 67 19 39 26 33 00 82	127 138 143 144 148 145 117 126 169 184	10 12 19 12 18 10 16 6	AL TO	108 94 109 101 97 101 90 89 106 80	53 76 96 62 76 70 110 79 93
15:00 15:15 15:30 15:45 16:00 16:15 16:30 16:45 17:00 17:15	g	2 Priest Achieves 2 Priest Pri	0 0 0 0 0 0 0	\$88500 0 2 0 3 2 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	88 99 99. 88 77 88 100 111	5 (6) (6) (7) (7) (7) (7) (8) (8) (8) (8		0 0 0 0 1 0 0 1 1 0 0 1 1 2 1 1 1 1 2 1 1	BEOO	36 36 37 45 51 62 33 41 62 59 48	0 0 1 1 0 2 0 0	\$9500 1 1 0 0 0 0	O O O O Bicycles on Road		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0		O O O O Bicycles on Road	0 0 0 0 0 0 0	1 Le	noo leeft sepon se	0 0 0 0 Trucks		2 1 2 0 3 0 0 1 1	O O O Bicycles on Road		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0	0 0 0 0 0 2 0 1 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 1 1 9 6 7 5 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 1 1 2 1 0 0	0 0 0 0 0 0 0 0 0 0		O O O Cleht Vehicles	0 0 0 0 0 Trucks		0 0 0 0 0 0	O O O O O O O O O O O O O O O O O O O		O O O O O O O O O O O O O O O O O O O		19 17 20 10 22 11 11 18 15	2 1 0 1 0 0 0 0		99999 0 2 2 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	83 72 83 87 74 88 75 70 88 62		0 1 0 1 0 0 1 0 0	1 0 2 1 0 1 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 2 2 1 0 0		0 0 0 0 0 0 0 0 0		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	O O O O O O O O O O O O O O O O O O O	1 0 0 0 0 0		0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O O O O O O O O O O O O O O O O O O O		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	32 48 60 35 53 48 67 43 52 44	0 0 0 0 0 0		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	O O O Bicycles on Road	0 Clight Vehicles	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 1 0 0	O O O O O O O O O O O O O O O O O O O	1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	7 7 5 9 3 3 2 0 0 2 3 3 8	0 0 0 1 0 0 1 0 0	3 1 2 0 0 0 0 0	0 0 0 0 0 0 0 0 0	20 00 00 00 00 00 00 00 00 00 00 00 00 0		0 0 0 0 0 0 0 0	9888 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		O O O O O O Pedestrians	2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	98 20 67 19 39 26 33 00 82	127 138 143 144 148 145 117 126 169 184 138	10 12 19 12 18 10 16 6 14 6 8	AL TO	108 94 109 101 97 101 90 89 106 80	53 76 96 62 76 110 79 93
15:00 15:15 15:30 15:45 16:00 16:15 16:30 16:45 17:00	g	4 2 5 2 7 3 3 3 1 2 1	0 0 0 0 0 0 0	\$88500 0 2 0 3 2 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	88 99 9. 9. 88 77 88 100 111	5 (6 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1		0 0 0 0 1 0 0 1 1 0 0 1 1 2 1 1 1 1 2 1 1	BEOMEO SANDANA O O O O O O O O O O O O O O O O O O	36 36 37 45 51 62 33 41 62 59 48	0 0 1 1 0 2 0 0	\$9500 1 1 0 0 0 0	O O O O Bicycles on Road		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0		O O O O Bicycles on Road	0 0 0 0 0 0 0 0	1 Le	eeft seppings to the sepping to the seppings to the seppings to the seppings to the sepping to the seppings to the sepping to the seppings to the sepping	0 0 0 0 Trucks		2 1 2 0 3 0 0 1 1	O O O Bicycles on Road		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0	0 0 0 0 0 2 0 1 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 1 9 6 7 5 9 5 5 4	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 1 1 2 1 0 0	0 0 0 0 0 0 0 0 0 0		O O O Cleht Vehicles	0 0 0 0 0 Trucks		0 0 0 0 0 0	O O O O O O O O O O O O O O O O O O O		O O O O O O O O O O O O O O O O O O O		19 17 20 10 22 11 11 18 15	2 1 0 1 0 0 0 0		99999 0 2 2 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	83 72 83 87 74 88 75 70 88 62		0 1 0 1 0 0 1 0 0	1 0 2 1 0 1 0 0		O O O O O O O O O Bkycles on Road	1 1 1 2 2 1 0 0		0 0 0 0 0 0 0 0		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	O O O O O O O O O O O O O O O O O O O	1 0 0 0 0 0		0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O O O O O O O O O O O O O O O O O O O		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	32 48 60 35 53 48 67 43 52 44	0 0 0 0 0 0		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	O O O Bicycles on Road	0 Clight Vehicles	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 1 0 0	O O O O O O O O O O O O O O O O O O O	1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	7 7 5 9 3 3 2 0 0 2 3 3 8	0 0 0 1 0 0 1 0	3 1 2 0 0 0 0 0	0 0 0 0 0 0 0 0 0	20 00 00 00 00 00 00 00 00 00 00 00 00 0		0 0 0 0 0 0	9888 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		O O O O O O O Pedestrians	2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	98 20 67 19 39 26 33 00 82	127 138 143 144 148 145 117 126 169 184	10 12 19 12 18 10 16 6 14 6 8	AL TO	108 94 109 101 97 101 90 89 106 80	53 76 96 62 76 70 110 79 93

APPENDIX D

McLaren Traffic Engineering Traffic Impact Assessment (DA1127/07)

NSW DEPARTMENT OF COMMERCE SEPTEMBER 2007

TRAFFIC & PARKING STUDY
IN SUPPORT OF PROPOSED NEW EDUCATIONAL FACILITIES
& ASSOCIATED WORKS INCLUDING ADDITIONAL PARKING
COFFS HARBOUR EDUCATION CAMPUS
AT HOGBIN DRIVE, COFFS HARBOUR
DA# 1127/07

M^CLAREN TRAFFIC ENGINEERING 5 JABIRU PLACE WORONORA HEIGHTS NSW 2233 PH (02) 9545-5161 FAX (02) 9545-1227

TABLE OF CONTENTS

1. IN	TRODUCTION	1
2. SI	TE LOCATION AND SURROUNDING CONTEXT	1
3. EX	XISTING TRANSPORT/TRAFFIC CONDITIONS	1
3.4 3.5 3.6	ROAD HIERARCHY ROAD CONDITIONS TRAFFIC MANAGEMENT PARKING DEMAND 4.1 Existing Student / Staff Attendance 4.2 Travel Mode Split EXISTING TRAFFIC GENERATION PUBLIC TRANSPORT PROVISION	2 3 4 4 5
	LANNED TRANSPORT INFRASTRUCTURE	
5. PF 5.1 5.2	COUNCIL PARKING & ACCESS REQUIREMENTSPARKING SUPPLY	6
6. TF	RAFFIC & PARKING IMPACT	7
6.1 6.2 6.3 6.4	TRAFFIC GENERATION TRAFFIC IMPACTS OF PROPOSAL INTERNAL IMPACTS PARKING PROVISION	7 8
7. C	ONCLUSIONS	9

1. INTRODUCTION

M^CLaren Traffic Engineering was commissioned in June 2007 by the NSW Department of Commerce to undertake a traffic and parking study for the Coffs Harbour TAFE new educational facilities & associated works including additional parking.

This report addresses the following issue raised in Council's letter dated 21 May 2007 (received on 1st June 2007 by the Department of Education & Training) in relation to DA # 1127/07:

"Council's City Services Branch has raised an issue in relation to the potential impact of the proposed development on the existing intersection of Hogbin Drive and the entrance road. Given that the proposed development will result in an additional 171 new students a Traffic Study, which examines the impact of the proposed development on the subject intersection should be submitted to Council for consideration ... Note, the application requires referral to a Regional Advisory Committee Traffic."

During the conduct of the study, discussions were held with representatives from Coffs Harbour Council (traffic department), Coffs Harbour Education Campus and the NSW Department of Commerce. The co-operation and assistance given by these representatives is acknowledged.

2. SITE LOCATION AND SURROUNDING CONTEXT

Situated on the east coast, the Coffs Harbour Education Campus (CHEC) is located south of Coffs Harbour city centre. CHEC consists of a combined High School, University & TAFE teaching facilities. Location of the Site is shown in **Figures 1 & 2**.

The site is bound by dense bush land to the north, east and south with access off Hogbin Drive to the west. The site currently includes existing buildings and car parking as shown on the Campus Site map (**Figure 3**). There is a large dam to the south of the site. The campus buildings are generally clustered across a ridge on the site with a spine road and parking facilities that serve the various buildings on the site.

3. EXISTING TRANSPORT/TRAFFIC CONDITIONS

3.1 Road Hierarchy

Hogbin Drive is a Regional road, carrying moderately high traffic volumes, under the care and control of the Coffs Harbour City Council. Recent upgrades of Hogbin Drive are currently under construction north of High Street, with the assistance of funding from Federal, State and local Council.

Stadium Drive is a collector road under the care and control of Coffs Harbour City Council. Stadium Drive is planned to become a future Regional road, as depicted in **Figure 4**, obtained from the Roads & Traffic Authority.

3.2 Road Conditions

Hogbin Drive is constructed as a variable width traffic corridor. Its general operating segment design conditions are as follows:

- High Street to General Aviation access ... 4 lane undivided (80km/h).
- General Aviation access to Airport ... 3 lane undivided (2 south) (80km/h).
- CH Airport to CHEC ... 2 lane undivided (80km/h).
- CHEC to Boambee Ck Bridge ... 3 lane undivided (2 north) (100km/h).
- On Boambee Ck Bridge to Sawtell Road ... 2 lane undivided (100km/h).

The above general speed limits reduce to 60km/h on the approaches to the roundabout controls located at the following Hogbin Drive intersections:

- High Street.
- CH Airport.
- □ CHEC / Stadium Drive. (A 40km/h school zone also applies)
- Sawtell Road.

Stadium Drive is generally constructed as a 2 lane undivided carriageway linking the Pacific Highway to Hogbin Drive.

3.3 Traffic Management

The prevailing traffic management conditions within the vicinity of the site include:

- Round-a-bout at the intersection of Hogbin Drive with the CHEC access and Stadium Drive.
- □ 40km/h school zone speed limit applying on the southern leg of the above listed intersection (on Hogbin Drive south). The school zone speed limit applies from 8:00am to 9:30am and from 2:30pm to 4:00pm on school days.
- Other speed limits along Hogbin Drive as outlined above in Section 3.2 of this report.

The key intersection investigated is the intersection of Hogbin Drive / Stadium Drive / CHEC.

To this end, traffic flow counts were undertaken at the key intersections on Wednesday 8th & Thursday 9th August 2007 from 5:00pm to 6:00pm and from 7:30am to 10:00am, respectively.

The recorded peak hourly flows for these periods are presented in Figure 5.

The performance of the key intersections and driveways were analysed with the aid of the **aaSIDRA** computer program, which is used to evaluate the performances of intersections controlled by stop/give way signs, roundabouts or traffic signals. It provides a number of measures of performance including vehicle delay, degree of saturation and level of service.

The result of this analysis is shown in **Table 1** and in Annexure A.

TABLE 1: EXISTING INTERSECTION PERFORMANCE ("aaSIDRA V3.1")

Intersection	Peak Hour	Degree of Saturation ⁽¹⁾	Average Delay ⁽²⁾ (sec/vehicle)	95% Back of Queue (m)	Level of Service ⁽³⁾
Hogbin Drive / Stadium Drive /	8:40 to 9:40 AM	0.53	5.9 (13.7 Right out CHEC)	35 (Hogbin South)	Α
CHEC	5:00-6:00PM	0.50	7.9 (15.3 Right out CHEC)	32 (Hogbin North)	Α

NOTES : (1) Degree of Saturation is the ratio of demand to capacity for the most disadvantaged movement.

- (2) Average delay is the delay experienced by the most disadvantaged movement under stop / give way or roundabout control modes and the total delay averaged for all movements under traffic signal control. (Maximum delay in brackets for most critical movement).
- (3) Level of Service is a qualitative measure of performance describing operational conditions. There are six levels of service, designated from A to F, with A representing the best operational condition and level of service F the worst.

The criteria used to evaluate performance are shown in **Annexure B**.

Accordingly, it is evident from **Table 1** above that the performance of the key intersection currently operates at a GOOD level of service during the peak demand periods investigated.

The observations revealed that the following effects occur:

- AM peak Northbound traffic volumes along Hogbin Drive on the approach to CHEC roundabout creates queues of 6 to 12 vehicles, particularly due to the effect of the 40km/h school speed zone.
- AM peak Queue of vehicles entering CHEC within the eastern (CHEC) roadway BRIEFLY extend back to Hogbin Drive over relatively short period during the AM peak. The effect occurring between 8:50 to 8:55am.
- PM peak no extended queuing observed.

3.4 Parking Demand

Currently there are a total of some 630 designated car parking spaces on the site.

Surveys of on-site parking demand were conducted on Thursday 9th August 2007 during both the day and evening periods. These surveys showed a peak parking accumulation of 653 vehicles, 26 bicycles, 1 route bus, 1 college bus and 1 truck at 10:00am. The buses and truck were parked in appropriate locations for that purpose. Thus the demand exceeds supply by some 23 cars.

During the evening, much less parking demand occurs, with an observed peak of 121 vehicles, no bicycles and 1 college bus at 7pm, represents 19% of capacity.

3.4.1 Existing Student / Staff Attendance

Estimates undertaken at the College on Thursday 9th August 2007, indicate that a peak of approximately 633 students and 105 staff (including service staff) were on campus at 10:00am. In the evening on the same day a peak of approximately 120 students and 30 were on the campus at around 6pm. Thus the peak parking demand period is during the day.

Surveys of the existing CHEC indicate that although there are 2,488 effective full time (EFT) students at the campus based upon the number of actual face-to-face teaching hours, many of these face-to-face teaching hours are for part time student positions, resulting in a smaller proportion of students on campus at any one time (due to the "floating" nature of students arriving / departing over any particular week and any particular day. Thus based upon the conducted survey on the peak day of the week, it is evident that 25% (i.e. 633 / 2488) of the EFT occurs, in terms of peak number of students on campus at any one time typically.

Hence for the additional 171 student places associated with the proposed development, this equates to 44 additional students on-site at any one time plus 8 extra staff.

3.4.2 Travel Mode Split

Based upon a questionnaire survey undertaken at CHEC on Thursday 9th August 2007, the following mode split characteristics for students were found:

Students travel habits surveyed at 10 am on 9 August 2007

	#Students	%	%	%	%	%
		Total	Bus	Driver	Passenger	Bike
SCU	235	37	9	76	12	3
TAFE	292	46	22	50	24	4
CHSC	106	17	53	13	28	6
TOTAL	633	100	22	53	20	5

Notes:

- 1. SCU University students
- 2. TAFE TAFE students
- 3. CHSC High School students
- 4. 117 Y11 students were doing an exam and excluded from survey.
- 5. 35 students were on work placement.

Of the students that drive to this College all park within the CHEC grounds at all times. The staff car driver proportion is 92%.

Hence during the peak daytime period, the additional 44 students will give rise to an additional parking need of **22** spaces (i.e. 50% TAFE component x 44). The additional 8 staff will give rise to a need for a further **8** cars, thus an extra supply of **30** car spaces is needed for the subject development.

3.5 Existing Traffic Generation

It is evident from the traffic counts that the existing College generated a peak of 588 vehicles (498 inbound; 90 outbound) during the 8:40am to 9:40am period. The generation during the 5:00pm to 6:00pm period was 317 vehicles (109 inbound; 208 outbound). After 6pm the on-site parking demand and traffic generation noticeably declines.

These volumes include staff, students and visitor effects.

Hence, the recorded traffic generation per 100 students on-site at any one time equates to the rates shown in **Table 2** below, which includes total traffic demand (i.e. staff and students).

TABLE 2: TRAFFIC GENERATION RATES*
(VEHICLES PER 100 PEAK ON-SITE STUDENTS)

DIRECTION	AM PEAK	PM PEAK
	(8:40 to 9:40)	(5:00-6:00)
INBOUND	79\100	17\100
OUTBOUND	14\100	33\100
TOTAL	93/100 students	50/100 students

^{*} Includes staff and students effects. It reflects the mix of Uni, TAFE & High School students on campus

3.6 Public Transport Provision

The College is served by bus services that deliver and collect students from a dedicated on-site bus zone. These services link to suburbs north and south of the site via Hogbin Drive. The services peak during the morning and afternoon arrival / departure periods and are much less pronounced during the evenings.

4. PLANNED TRANSPORT INFRASTRUCTURE

Discussion with council officers revealed that no significant road network improvements are currently committed or planned for the general locality, other than the extension of Hogbin Drive north of High Street, which is nearing completion.

The Roads & Traffic Authority has no works planned in the immediate vicinity.

5. PROPOSED DEVELOPMENT

New proposed works comprise the following components:

- New automotive teaching facilities
- New nursing teaching facilities
- New car parking facilities for 62 spaces increasing the on-site supply to some 692 spaces.
- After completion of the project, the facilities at Coffs Harbour will provide a total of 2,659 effective full time (EFT) students, comprising of 2,488 existing and 171 new EFT. This equates to a 6.8% increase in students.

Although 171 new student EFT's are created, that does not translate to an additional 171 students on site at any one time. Refer to Section 3.4.1 for the analysis underpinning the projected 44 new students and 8 new staff on campus at any one time during the peak period, which in this case occurs during the day.

The layout of the proposed parking improvement works is presented in **Figure 3**.

5.1 Council Parking & Access Requirements

Coffs Harbour City Council does not specify a rate for parking for tertiary education establishments, but requires a parking study to justify needs.

The RTA has no specified rates for Colleges.

It is evident from parking demand surveys at the CHEC College that an additional **30** parking spaces (22 for students and 8 for staff) are needed.

5.2 Parking Supply

The proposed additional on-site parking supply of **62** spaces exceeds the forecast parking demand during the peak daytime by some 32 spaces. The extra parking supply however will improve current conditions by meeting the current undersupply of 23 in an operational sense. Thus operationally, the proposed 62 spaces will exceed operational peak parking demand needs by some 9 spaces.

As an alternative to supplying parking at the observed demand rate, the provision of improved bus services or indeed improved usage of prevailing bus services by students could be investigated to achieve a lower parking rate outcome.

At night the existing on-site parking supply is more than adequate.

6. TRAFFIC & PARKING IMPACT

6.1 Traffic Generation

The proposed additional student numbers of 44 at any one time as an expected maximum would yield the following traffic generation levels.

TABLE 3: TRAFFIC GENERATION ESTIMATE*
(VEHICLES PER 100 ON-SITE STUDENTS)

DIRECTION	AM PEAK (8 to 9)	PM PEAK (4:45-5:45)
INBOUND	79\100*44 = 35	17\100*44 = 7
OUTBOUND	14\100*44 = 6	33\100*44 = 15
TOTAL	41	22

^{*} Includes staff and students effects.

The resulting traffic generation of 41 (35 in; 6 out) vehicle trips during the AM peak and 22 (7 in; 15 out) vehicle trips during the PM peak have been applied as a worst-case assessment. The assigned traffic is shown in **Figure 5**.

6.2 Traffic Impacts of Proposal

The effect of the increased traffic volumes on the performance of the key intersection of Hogbin Drive / CHEC access / Stadium Drive is shown in **Table 4**.

TABLE 4: FORECAST INTERSECTION PERFORMANCE ("aaSIDRA V3.1")

Intersection	Peak Hour	Degree of Saturation ⁽¹⁾	Average Delay ⁽²⁾ (sec/vehicle)	95% Back of Queue (m)	Level of Service ⁽³⁾
Hogbin Drive / Stadium Drive /	8:40 to 9:40 AM	0.54	6.0 (13.7 Right out CHEC)	36 (Hogbin South)	Α
CHEC	5:00-6:00PM	0.51	8.0 (15.4 Right out CHEC)	32 (Hogbin North)	Α

NOTES : (1) Degree of Saturation is the ratio of demand to capacity for the most disadvantaged movement.

- (2) Average delay is the delay experienced by the most disadvantaged movement under stop / give way or roundabout control modes and the total delay averaged for all movements under traffic signal control. (Maximum delay in brackets for most critical movement).
- (3) Level of Service is a qualitative measure of performance describing operational conditions. There are six levels of service, designated from A to F, with A representing the best operational condition and level of service F the worst.

It is evident from **Table 4** above that the key intersection of Hogbin Drive / CHEC access / Stadium Drive will continue to operate at its existing GOOD level of service during the peak demand periods investigated as a consequence of the proposed development.

We have undertaken a further test of the AM & PM peak hour performance of the intersection under a 10 year growth rate of both a 1%p.a rate (which has occurred over a 17 year period from 1990 to 2007) and a 3%p.a rate and found that the existing roundabout will continue to operate at Level of Service "A/B" during both peaks investigated.

6.3 Internal Impacts

Observations have been conducted in the field by an experienced traffic engineer I road safety auditor from $M^{C}Laren\ Traffic\ Engineering$. The observations revealed the following effects:

- AM peak Northbound traffic volumes along Hogbin Drive on the approach to CHEC roundabout creates queues of 6 to 12 vehicles, particularly due to the effect of the 40km/h school speed zone.
- AM peak Queue of vehicles entering CHEC within the eastern (CHEC) roadway BRIEFLY extend back to Hogbin Drive over relatively short period during the AM peak. The effect occurring between 8:50 to 8:55am.
- □ PM peak no extended gueuing observed.

In order to address the internal queue issue within the campus that BRIEFLY extends back to the roundabout during a peak 5 to 10 minute period before 9am, it is evident that the cause is the zebra crossing on the internal road that serves the main carparking area to the south of the entry roadway. To overcome this issue, it is recommended that the works depicted in **Figure 6**, which includes the relocation of the zebra crossing further to the south away from the "T" junction by some 15 to 20 metres.

6.4 Parking Provision

The proposed additional 62 on-site parking spaces will exceed the current shortfall as well as the additional demand generated by the proposed development by some 9 spaces.

7. CONCLUSIONS

The proposed development is supportable in terms of traffic and parking impacts, subject to the recommended works depicted in **Figure 6** to remove an existing hazard and to control the extent of queuing that briefly occurs over a relatively short period of 5 to 10 minutes before 9am.

The proposed additional on-site parking supply of **62** spaces exceeds the forecast parking demand during the peak daytime by some 32 spaces. The extra parking supply however will improve current conditions by meeting the current undersupply of 23 in an operational sense. Thus operationally, the proposed 62 spaces will exceed operational peak parking demand needs by some 9 spaces.

As an alternative to supplying parking at the observed demand rate, the provision of improved bus services or indeed improved usage of prevailing bus services by students could be investigated to achieve a lower parking rate outcome.

At night the existing on-site parking supply is more than adequate.

The key intersection of Hogbin Drive / CHEC access / Stadium Drive will continue to operate at its existing GOOD level of service during the peak demand periods investigated as a consequence of the proposed development.

No adverse residential amenity or road safety effects will result from the proposed development.

Finally as the proposed development does not exceed 500 new students or 250 new car parking spaces it does not require referral to the Regional Traffic Committee, however the excess of 50 parking spaces requires referral to the Local Traffic Committee under SEPP11.

KEY

SITE

COFFS HARBOUR EDUCATION CAMPUS

FIGURE 1 SITE LOCATION

PREPARED FOR: DEPT. OF COMMERCE

COFFS HARBOUR EDUCATION CAMPUS

FIGURE 2 PART AERIAL MAP

PREPARED FOR: DEPT. OF COMMERCE

FIGURE 3: CAMPUS SITE PLAN

(Source: Suters Architects)

PREPARED FOR: DEPT. OF COMMERCE

FIGURE 4: RTA ROAD HIERARCHY PLAN

COFFS HARBOUR EDUCATION CAMPUS

FIGURE 5
PEAK HOUR TRAFFIC FLOWS
AM PEAK (PM PEAK)

PREPARED FOR: DEPT. OF COMMERCE

FIGURE 6: RECOMMENDED WORKS

ANNEXURE A - SIDRA RESULTS

Movement Summary CHEC / HOGBIN / STADIUM - EXISTING AM PEAK Roundabout

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
Hogbi	n Dr (S	South)								
1	L	179	5.0	0.203	4.3	LOS A	9	0.32	0.45	38.1
2	Т	667	4.9	0.530	2.6	LOS A	35	0.38	0.30	38.8
3	R	103	4.9	0.531	9.4	LOS A	35	0.38	0.61	36.0
Appro	ach	949	5.0	0.530	3.7	LOS A	35	0.37	0.36	38.3
CHEC	access	5								
4	L	18	5.6	0.030	8.3	LOS A	1	0.61	0.64	47.6
5	Т	18	0.0	0.080	6.9	LOS A	4	0.62	0.62	48.7
6	R	59	5.1	0.080	13.7	LOS A	4	0.62	0.73	44.1
Appro	ach	95	4.2	0.080	11.4	LOS A	4	0.62	0.69	45.4
Hogbi	n Dr (I	North)								
7	L	254	3.1	0.271	7.4	LOS A	13	0.51	0.63	48.6
8	Т	513	5.1	0.464	4.8	LOS A	28	0.57	0.48	49.0
9	R	54	3.7	0.466	12.8	LOS A	28	0.57	0.73	44.3
Appro	ach	821	4.4	0.464	6.1	LOS A	28	0.55	0.55	48.5
Stadiu	ım Dr									
10	L	114	2.7	0.176	10.8	LOS A	9	0.73	0.80	46.4
11	Т	167	3.0	0.270	8.8	LOS A	16	0.77	0.77	47.7
12	R	61	3.3	0.270	13.0	LOS A	16	0.77	0.83	42.4
Appro	ach	341	2.9	0.270	10.2	LOS A	16	0.76	0.79	46.3
All Vehic	es	2206	4.4	0.531	5.9	LOS A	35	0.51	0.51	43.0

Symbols which may appear in this table:

Following Degree of Saturation

x = 1.00 for Short Lane with resulting Excess Flow

* x = 1.00 due to minimum capacity

Following LOS

- Based on density for continuous movements

Following Queue

- Density for continuous movement

Site: CHEC / HOGBIN DR - EXISTING AM Processed Sep 04, 2007 09:48:29AM

A0967, McLaren Traffic Engineering, Small Office **Produced by SIDRA Intersection 3.1.061208.34**

Movement Summary CHEC / HOGBIN / STADIUM EXISTING PM PEAK Roundabout

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%НV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
Hogbi	n Dr (S	South)								
1	L	94	5.3	0.126	8.1	LOS A	5	0.46	0.63	48.7
2	Т	379	5.0	0.336	6.0	LOS A	18	0.49	0.53	49.6
3	R	26	3.8	0.338	12.7	LOS A	18	0.49	0.71	44.6
Appro	ach	499	5.0	0.336	6.7	LOS A	18	0.48	0.56	49.1
CHEC	access	5								
4	L	40	5.0	0.074	11.2	LOS A	3	0.69	0.75	46.1
5	Т	28	0.0	0.209	8.6	LOS A	12	0.74	0.74	47.8
6	R	151	5.3	0.209	15.3	LOS B	12	0.74	0.82	43.3
Appro	ach	219	4.6	0.209	13.7	LOS A	12	0.73	0.80	44.3
Hogbi	n Dr (North)								
7	L	51	3.9	0.057	6.5	LOS A	2	0.30	0.51	50.0
8	Т	594	5.1	0.503	5.1	LOS A	32	0.39	0.46	50.5
9	R	135	3.0	0.502	12.0	LOS A	32	0.39	0.65	45.0
Appro	ach	780	4.6	0.503	6.4	LOS A	32	0.39	0.49	49.3
Stadiu	ım Dr									
10	L	103	2.9	0.112	8.0	LOS A	5	0.56	0.65	48.3
11	Т	38	2.6	0.112	6.5	LOS A	5	0.56	0.58	49.2
12	R	81	2.5	0.112	13.3	LOS A	5	0.56	0.73	44.4
Appro	ach	222	2.7	0.112	9.7	LOS A	5	0.56	0.67	46.8
All Vehic	les	1720	4.5	0.503	7.9	LOS A	32	0.48	0.57	48.2

Symbols which may appear in this table:

Following Degree of Saturation

x = 1.00 for Short Lane with resulting Excess Flow

* x = 1.00 due to minimum capacity

Following LOS

- Based on density for continuous movements

Following Queue

- Density for continuous movement

Site: CHEC / HOGBIN DR - EXISTING PM

Processed Sep 04, 2007 10:16:49AM

A0967, McLaren Traffic Engineering, Small Office **Produced by SIDRA Intersection 3.1.061208.34**

Movement Summary

CHEC / HOGBIN / STADIUM EXISTING AM PEAK + DEVELOPMENT Roundabout

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	% н V	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
Hogbi	n Dr (S	South)								
1	L	179	5.0	0.205	4.4	LOS A	9	0.33	0.45	38.1
2	Т	667	4.9	0.538	2.6	LOS A	36	0.39	0.31	38.7
3	R	111	5.4	0.539	9.5	LOS A	36	0.39	0.61	36.0
Appro	ach	957	5.0	0.538	3.7	LOS A	36	0.38	0.37	38.2
CHEC	access	5								
4	L	19	5.3	0.032	8.3	LOS A	1	0.61	0.64	47.6
5	Т	19	0.0	0.085	6.9	LOS A	4	0.62	0.62	48.6
6	R	63	4.8	0.085	13.7	LOS A	4	0.62	0.73	44.1
Appro	ach	101	4.0	0.085	11.4	LOS A	4	0.62	0.69	45.4
Hogbi	n Dr (North)								
7	L	272	3.0	0.288	7.5	LOS A	14	0.53	0.65	48.5
8	Т	513	5.1	0.471	4.9	LOS A	29	0.59	0.49	48.9
9	R	54	3.7	0.470	12.9	LOS A	29	0.59	0.74	44.2
Appro	ach	838	4.3	0.471	6.2	LOS A	29	0.57	0.56	48.4
Stadiu	ım Dr									
10	L	114	2.7	0.180	11.0	LOS A	9	0.74	0.81	46.2
11	Т	179	2.8	0.289	8.9	LOS A	17	0.78	0.79	47.6
12	R	61	3.3	0.289	13.2	LOS A	17	0.78	0.84	42.3
Appro	ach	353	2.8	0.289	10.3	LOS A	17	0.77	0.80	46.2
All Vehic	les	2249	4.4	0.539	6.0	LOS A	36	0.52	0.52	43.0

Symbols which may appear in this table:

Following Degree of Saturation

x = 1.00 for Short Lane with resulting Excess Flow

* x = 1.00 due to minimum capacity

Following LOS

- Based on density for continuous movements

Following Queue

- Density for continuous movement

Site: CHEC / HOGBIN DR - EXISTING AM + DEV

Processed Sep 04, 2007 11:23:32AM

A0967, McLaren Traffic Engineering, Small Office **Produced by SIDRA Intersection 3.1.061208.34**

Movement Summary

CHEC / HOGBIN / STADIUM

$\begin{tabular}{ll} EXISTING PM PEAK + DEV \\ \textbf{Roundabout} \end{tabular}$

Vehicle Movements

Mov ID	Turn	Dem Flow (veh/h)	%HV	Deg of Satn (v/c)	Aver Delay (sec)	Level of Service	95% Back of Queue (m)	Prop. Queued	Eff. Stop Rate	Aver Speed (km/h)
Hogbi	n Dr (S	South)								
1	L	94	5.3	0.127	8.2	LOS A	5	0.47	0.63	48.6
2	Т	379	5.0	0.341	6.1	LOS A	18	0.50	0.54	49.5
3	R	28	3.6	0.341	12.7	LOS A	18	0.50	0.72	44.6
Appro	ach	501	5.0	0.341	6.8	LOS A	18	0.49	0.57	49.0
CHEC	access	5								
4	L	43	4.7	0.080	11.2	LOS A	4	0.69	0.76	46.1
5	Т	31	0.0	0.225	8.6	LOS A	13	0.74	0.75	47.8
6	R	161	5.0	0.225	15.4	LOS B	13	0.74	0.82	43.3
Appro	ach	235	4.3	0.225	13.7	LOS A	13	0.73	0.80	44.2
Hogbi	n Dr (North)								
7	L	54	3.7	0.061	6.5	LOS A	2	0.31	0.51	49.9
8	Т	594	5.1	0.505	5.2	LOS A	32	0.40	0.46	50.4
9	R	135	3.0	0.506	12.0	LOS A	32	0.40	0.65	45.0
Appro	ach	783	4.6	0.505	6.4	LOS A	32	0.39	0.50	49.3
Stadio	ım Dr									
10	L	103	2.9	0.114	8.1	LOS A	5	0.57	0.66	48.2
11	Т	40	2.5	0.115	6.5	LOS A	6	0.56	0.59	49.2
12	R	81	2.5	0.115	13.4	LOS A	6	0.56	0.73	44.3
Appro	ach	224	2.7	0.115	9.7	LOS A	6	0.57	0.67	46.8
All Vehic	les	1743	4.4	0.506	8.0	LOS A	32	0.49	0.58	48.1

Symbols which may appear in this table:

Following Degree of Saturation

x = 1.00 for Short Lane with resulting Excess Flow

Following LOS

- Based on density for continuous movements

Following Queue

- Density for continuous movement

Site: CHEC / HOGBIN DR - EXISTING PM + DEV

Processed Sep 04, 2007 11:47:26AM

A0967, McLaren Traffic Engineering, Small Office **Produced by SIDRA Intersection 3.1.061208.34**

^{*} x = 1.00 due to minimum capacity

ANNEXURE B: aaSIDRA

Level of Service Criteria

Level of Service	Ave Delay per Vehicle (sec/veh)	Traffic Signals & Roundabouts	Give Way & Stop Signs		
Α	< 14	Good Operation	Good Operation		
В	15 to 28	Good with acceptable delays and spare capacity	Acceptable delays and spare capacity		
С	29 to 42	Satisfactory	Satisfactory, but accident study required		
D	43 to 56	Operating near capacity	Near capacity and accident study required		
E	57 to 70	At capacity; at signals, incidents will cause excessive delays Roundabouts require other control mode	At capacity, requires other control mode		
F	over 70	Extra capacity required	Extreme delay, traffic signals or other major treatment required		

Adapted from RTA Guide to Traffic Generating Developments, December 2002

APPENDIX E

COFFS HARBOUR TRAFFIC STUDY

COFFS HARBOUR TRAFFIC STUDY

INTERSECTION ANALYSIS REPORT FOR HOGBIN DRIVE CORRIDOR AND HARBOUR DRIVE / EARL STREET INTERSECTION

FOR

COFFS HARBOUR CITY COUNCIL

Gold Coast

Project No:

Suite 26, 58 Riverwalk Avenue Robina QLD 4226 P: (07) 5562 5377 W: www.bitziosconsulting.com.au

P1158

Brisbane

Version No:

Level 2, 428 Upper Edward Street Spring Hill QLD 4000 P: (07) 3831 4442 E: admin@bitzioscon.sulting.com.au

001

Sydney

Studio 203, 3 Gladstone Street Newtown NSW 2042 P: (02) 9557 6202

Issue date: 20th Nov ember 2012

DOCUMENT CONTROL SHEET

Issue History

Report File Name	Prepared by	Reviewed by	Issued by	Date	Issued to
P1158.001R Intersection Analysis for Hogbin Drive	M.Kimmins	A.Eke	A.Eke	20/12/12	Robert Fletcher
Corridor and Harbour Driv e-Earl Street Intersection					Coffs Harbour Council

Copyright in the information and data in this document is the property of Bitzios Consulting. This document and its information and data is for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or in part for any purpose other than for which it was supplied by Bitzios Consulting. Bitzios Consulting makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or its information and data.

CONTENTS

			Page
1.	INTRODUC	TION	1
1.1 1.2 1.3	ST	CKGROUND PUDY AREA INTERSECTION COPE	1 1 2
2.	TRAFFIC D	DEMANDS	3
2.1 2.2		AFFIC SURVEYS CKGROUND TRAFFIC GROWTH	3
3.	TRAFFIC N	MODELLING	4
3.1 3.2 3.3 3.4 3.4.1 3.4.2 3.4.3 3.4.4	INT INT INT Site Site Site	TERSECTION ASSESSMENT CRITERIA TERSECTION CONFIGURATIONS TERSECTION PERFORMANCE TERSECTION UPGRADES e 1 - Hogbin Driv e / Sawtell Road / Toormina Road e 2 - Hogbin Driv e / Stadium Drive / Doug Knight Drive e 5 - Hogbin Driv e / Orlando Street e 6 - Harbour Driv e / Earl Street	4 4 6 8 8 9 10
4.	CONCLUSI	ONS	12
Table	2.1: 3.1: 3.2: 3.3: 3.4: 3.5: 3.6: 3.7: 3.8: 3.9:	Traffic Growth (2008 to 2012 compounding per annum) Performance Criteria Intersection Configurations AM SIDRA Intersection Modelling Outputs PM SIDRA Intersection Modelling Outputs Required Intersection Upgrades 2022 Site 1 – Hogbin Drive / Sawtell Road / Toormina Road SIDRA Results 2022 Site 2 – Hogbin Drive / Stadium Drive / Doug Knight Drive SIDRA Results 2022 Site 5 – Hogbin Drive / Orlando Street SIDRA Results 2022 Site 6 – Harbour Drive / Earl Street SIDRA Results	
Figur Figur	I res e 1.1:	Study Area and Intersection Locations	
Figur	e 2.1:	Traffic Growth (2008 to 2012 compounding per annum)	
Figur Figur	e 3.1: e 3.2: e 3.3: e 3.4:	Site 1: Hogbin Drive / Sawtell Road / Toormina Road Upgraded Layout Site 2: Hogbin Drive / Stadium Drive / Doug Knight Drive Upgraded Layout Site 5: Hogbin Drive / Orlando Street Upgraded Layout Site 6: Harbour Drive / Earl Street Upgraded Layout	
	endices	TDC Troffe Surveye	

Appendix A: TDC Traffic Surveys
Appendix B: SIDRA Intersection Outputs

1. INTRODUCTION

1.1 BACKGROUND

Bitzios Consulting has been commissioned by Coffs Harbour City Council (CHCC) to analyse the major intersections on the Hogbin Drive corridor and the Harbour Drive / Earl Street intersection. Hogbin Drive is a major corridor that runs parallel with the Pacific Motorway and links both southern and northern residential areas of Coffs Harbour to the CBD via Harbour Drive. Hogbin Drive is used as an alternative route to the Pacific Highway during peak periods.

Harbour Drive provides important connections between the Pacific Highway and the CBD to eastern residential areas, beaches and the Coffs Harbour airport. Between the Pacific Highway and Earl Street, Harbour Drive has a "main street" environment, primarily servicing the retail and commercial core of Coffs Harbour. Through traffic typically bypasses this section of Harbour Drive via Park Avenue.

1.2 STUDY AREA INTERSECTION

Hogbin Drive is a north-south arterial road corridor using roundabouts to control key intersections. The grid structured road network in the CBD is also primarily comprised of roundabouts except for on the Pacific Highway where signals are typically used. It is noted however that Council is planning signalised intersection upgrades in the CBD such as at the Harbour Drive / Gordon Street intersection. Historically, roundabouts provide a safe and efficient form of traffic intersection control when traffic flows are balanced, but do not provide an efficient system when combined with high pedestrian flows.

CHCC has determined that the following roundabouts should be reviewed to determine the future operational performance and identify any upgrade requirements to meet future traffic demands and maintain an adequate level of service:

- Site 1 Hogbin Drive Sawtell Road Toormina Road;
- Site 2 Hogbin Drive Stadium Drive Doug Knight Drive;
- Site 3 Hogbin Drive Howard Street Albany Street City Hill Drive;
- Site 4 Hogbin Drive Harbour Drive;
- Site 5 Hogbin Drive Orlando Street; and
- Site 6 Harbour Drive Earl Street.

The above intersection locations are shown in Figure 1.1.

Figure 1.1: Study Area and Intersection Locations

1.3 **S**COPE

The primary focus of this study is to assess the performance of key intersections along the Hogbin Drive corridor as well as the Harbour Drive / Earl Street intersection. The existing and future performances of the intersections are assessed to identify any future upgrades required as a result of traffic growth. The scope of work involved in this study included the following tasks:

- undertake intersection surveys and 'back-of-queue' observations during AM (7:00AM to 10:00AM) and PM (3:00PM to 6:00PM) peak periods on a standard weekday;
- develop SIDRA intersection models for the 2012 peak periods and confirm existing operations;
- review historical count data (as supplied by Council) to gauge expected traffic growth within the next 10 years;
- undertake future year (2022) SIDRA intersection assessments for the AM and PM peak periods; and
- identify required upgrades to each intersection to maintain a practical level of capacity to cater for future traffic volumes.

2. TRAFFIC DEMANDS

2.1 TRAFFIC SURVEYS

Traffic demands for each intersection are based on surveys undertaken by Traffic Data and Control (TDC) on Wednesday 28th and Thursday the 29th of November 2012. These surveys included the both light and heavy vehicle volumes for accurate input in to the SIDRA intersection traffic models. Further detail of the traffic surveys is provided in Appendix A.

2.2 BACKGROUND TRAFFIC GROWTH

Historical count data was also provided by Council for use in determining future growth rates. The best data identified for use to determine Hogbin Drive traffic growth was 2008 tube counts which were recorded shortly after the opening of the Hogbin Drive Bridge over Coffs Harbour Creek. The traffic growths are assumed to be compounding to establish conservative traffic volumes for the future 2022 assessment. Figure 2.1 shows the compounding traffic growth rates per annum based on the available 2008 and 2012 traffic volumes.

Figure 2.1: Traffic Growth (2008 to 2012 compounding per annum)

Due to the high variance in traffic growths on individual links and directions, an overall growth rate was determined for use at all locations within the study area. Table 2.1 below shows the traffic growth rates for all locations assumed for use in this study.

Table 2.1: Traffic Growth (2008 to 2012 compounding per annum)

Location	AM	PM
Hogbin Drive / Orlando Street	2.7%	2.0%
Hogbin Drive / Harbour Drive	4.4%	3.6%
Hogbin Drive / Albany Street / Howard Street	3.2%	2.2%
All Locations	3.4%	2.5%

3. TRAFFIC MODELLING

3.1 Intersection Assessment Criteria

The Sidra "RTANSW" model configuration setting was adopted for this assessment. The Level of Service (LOS) outputs are solely based on 'Average Delay' which can misrepresent the true operating condition of the intersection.

To accurately define the performance output of the scenarios modelled the 'Degree of Saturation', 'Average Delay' and '95%ile Back of Queue' output data has been captured for each approach. This enables a true understanding of the likely operational performance of each of the intersection approaches for each of the scenarios tested.

Based on our experience the criteria shown in Table 3.1 have been used to determine intersections approaching failure and intersections that have failed and as a result require upgrades.

Table 3.1: Performance Criteria

Performance Measure	Degree of Saturation (DOS)	Average Delay (s)	Level of Service	95%ile Queue (m)	
Approaching Failure	0.8-0.9	40-60	D	100-200	
Requires Upgrade	>0.9	>60	E, F	>200	

It should be noted that the assessment is based on a future design horizon, where a certain level of peak spreading would be expected.

3.2 Intersection Configurations

The existing intersection configurations for all sites are shown in Table 3.2.

Table 3.2: Intersection Configurations

3.3 Intersection Performance

Tables 3.3 and 3.4 show a summary of the SIDRA intersection modelling results for both AM and PM peak hour periods in 2012 and 2022. The tables highlight the performance of the intersections based on the criteria specified in Table 3.1.

Table 3.3: AM SIDRA Intersection Modelling Outputs

	2012 AM			2022 AM					
Annyacah	DOS	Doloy (a)	1.00	95%'ile	DOS	Doloy (a)	1.06	95%'ile	
Approach		Delay (s)	LOS / Sawte	Queue (m) ell Road / Tooi	DOS	, ,	LOS	Queue (m)	
South (Toormina Road)	0.575	8.0	A	32.5	0.92	19.2	В	138.8	
East (Sawtell Road)	0.353	10.9	В	13.5	0.535	12.2	В	27.0	
North (Hogbin Drive)	0.251	7.1	Α	10.8	0.354	7.3	Α	16.7	
West (Sawtell Road)	0.432	14.7	В	25.3	1.417	85.2	F	829.3	
Site	2 - Hog	bin Drive / S	Stadiun	n Drive / Doug	Knight	Drive			
South (Hogbin Drive)	0.462	6.3	Α	22.4	0.707	8.7	Α	57.9	
East (Doug Knight Drive)	0.078	12.0	В	3.7	0.213	18.7	В	12.8	
North (Hogbin Drive)	0.580	7.6	Α	32.3	0.886	14.1	В	130.3	
West (Stadium Drive)	0.343	9.4	Α	12.4	0.661	13.8	В	36.3	
Site 3 - H	ogbin D	rive / Howa	rd Stre	et / Albany Str	eet / City	/ Hill Drive			
South (Hogbin Drive)	0.453	4.6	Α	21.0	0.654	5.1	Α	41.4	
East (Howard Street)	0.072	11.0	В	2.4	0.135	13.3	В	5.1	
North (Hogbin Drive)	0.299	5.7	Α	13.3	0.466	6.5	Α	24.8	
West (Albany Street)	0.296	12.4	В	11.5	0.511	15.1	В	28.4	
South-West (City Hill Drive)	0.009	10.9	В	0.3	0.016	14.2	В	0.6	
	S	ite 4 - Hogb	in Driv	e / Harbour Dr	ive		'		
South (Hogbin Drive)	0.442	9.8	Α	19.2	0.802	15.8	В	60.1	
East (Harbour Drive)	0.404	9.5	Α	16.0	0.706	13.3	В	43.7	
North (Hogbin Road)	0.405	7.9	Α	16.9	0.693	12.2	В	47.0	
West (Harbour Drive)	0.372	9.4	Α	18.7	0.767	27.7	С	81.8	
	S	ite 5 - Hogb	in Driv	e / Orlando Stı	reet				
South-East (Orland Street)	0.366	12.1	В	17.6	0.523	13.9	В	31.4	
North-East (Hogbin Drive)	0.856	22.2	С	94.8	1.407	388.1	F	1215.0	
North-West (Orlando Street)	0.613	14.3	В	41.8	1.193	195.1	F	697.2	
South-West (Hogbin Drive)	0.462	8.7	AM	22.3	0.715	11.7	В	58.9	
Site 6 - Harbour Drive / Earl Street									
South-East (Harbour Drive)	0.342	5.7	Α	13.8	0.494	6	Α	24.8	
North-East (Earl Street)	0.091	10.2	В	3.2	0.163	12.3	В	6.6	
North-West (Harbour Drive)	0.343	7.3	Α	15.9	0.547	8.8	Α	34.7	
South-West (Earl Street)	0.609	13.5	В	37.5	1.036	81.1	F	332.2	

Table 3.4: PM SIDRA Intersection Modelling Outputs

		201	2 PM		2022 PM			
		5		95%'ile				95%'ile
Approach	DOS	Delay (s)	LOS	Queue (m) ell Road / Toor	DOS	Delay (s)	LOS	Queue (m)
South (Toormina Road)	0.373	7.8	A	16.7	0.541	9.5	Α	32.7
East (Sawtell Road)	0.373	10.6	В	12.5	0.501	13	В	26.7
North (Hogbin Drive)	0.442	8.2	A	21.2	0.657	11.8	В	50.5
West (Sawtell Road)	0.359	10.6	В	16.6	0.554	13.5	В	36.5
,				n Drive / Doug				00.0
South (Hogbin Drive)	0.334	6.8	Α	14.2	0.494	8.3	Α	27.6
East (Doug Knight Drive)	0.277	16.8	В	15.4	0.873	96.3	F	106.5
North (Hogbin Drive)	0.692	7.4	Α	47.1	0.923	12.7	В	163.2
West (Stadium Drive)	0.21	9.4	Α	7.3	0.311	10.1	В	12.3
Site 3 - H	ogbin D	rive / Howa	rd Stre	et / Albany Str	eet / City	Hill Drive		
South (Hogbin Drive)	0.361	4.4	Α	15.2	0.472	4.6	Α	23.2
East (Howard Street)	0.073	10.7	В	2.4	0.122	12.5	В	4.5
North (Hogbin Drive)	0.344	5.7	Α	15.6	0.48	6.5	Α	25.7
West (Albany Street)	0.309	11.8	В	11.2	0.438	12.9	В	19.3
South-West (City Hill Drive)	0.046	9.1	Α	1.4	0.48	7	Α	25.7
	S	ite 4 - Hogb	in Driv	e / Harbour Dr	ive		I	
South (Hogbin Drive)	0.461	9.2	Α	20.9	0.701	12.4	В	45.9
East (Harbour Drive)	0.374	9.3	Α	14.1	0.569	11.4	В	28.6
North (Hogbin Road)	0.415	8.1	Α	17.6	0.612	10.4	В	36.7
West (Harbour Drive)	0.376	9.1	Α	18.9	0.701	12.5	В	50.3
	S	ite 5 - Hogb	in Driv	e / Orlando Str	eet			
South-East (Orlando Street)	0.486	12.9	В	27.0	0.791	23.9	С	79.4
North-East (Hogbin Drive)	0.686	12.2	В	49.9	1.012	57.5	Е	268.0
North-West (Orlando Street)	0.490	14.1	В	27.7	0.876	34.8	С	109.7
South-West (Hogbin Drive)	0.572	10	Α	34.1	0.854	17.3	В	100.9
Site 6 - Harbour Drive / Earl Street								
South-East (Harbour Drive)	0.366	6.0	Α	15.6	0.488	6.4	Α	24.4
North-East (Earl Street)	0.212	11.1	В	7.9	0.358	14.1	В	15.8
North-West (Harbour Drive)	0.446	7.4	Α	22.6	0.654	10.0	Α	50.3
South-West (Earl Street)	0.651	14.8	В	44.2	0.985	53.8	D	226.9

3.4 INTERSECTION UPGRADES

The intersections that required upgrading due to unsatisfactory performance are shown in Table 3.5.

Table 3.5: Required Intersection Upgrades

	2012AM	2012PM	2022AM	2022PM
Intersection	Req	uires Upgr	ades (Yes /	No)
Site 1 - Hogbin Drive / Sawtell Road / Toormina Road	No	No	Yes	No
Site 2 - Hogbin Drive / Stadium Drive / Doug Knight Drive	No	No	No	Yes
Site 3 - Hogbin Drive / Howard Street / Albany Street	No	No	No	No
Site 4 - Hogbin Drive / Harbour Drive	No	No	No	No
Site 5 - Hogbin Drive / Orlando Street	No	No	Yes	Yes
Site 6 - Harbour Drive / Earl Street	No	No	Yes	Yes

Based on the above table, four of the six intersections require upgrades by 2022 to improve performance to satisfactory conditions. The following sections detail the intersection upgrades and there corresponding performance. It should be noted that significant change to travel patterns and volumes are likely to occur over the next 10 years and therefore upgrades will require further assessment closer to the time the required time of implementation.

3.4.1 Site 1 - Hogbin Drive / Sawtell Road / Toormina Road

The Hogbin Drive / Sawtell Road / Toormina Road roundabout has been upgraded to provide two through lanes from the southern Toormina Road approach. This requires the upgrade Hogbin Drive northbound to include an additional lane. Road widening will also need to take into account a short right turn pocket for access to Barcoo Court. Figure 3.1 shows the proposed upgrades to the Hogbin Drive / Sawtell Road / Toormina Road roundabout.

Figure 3.1: Site 1: Hogbin Drive / Sawtell Road / Toormina Road Upgraded Layout

Table 3.6 summarises the SIDRA intersection modelling results for both AM and PM peak hour periods in 2022 with the proposed upgrades. The results indicate that the intersection performs adequately in both AM and PM peak periods.

Table 3.6: 2022 Site 1 – Hogbin Drive / Sawtell Road / Toormina Road SIDRA Results

		202	22 AM			2022	2 PM	
Approach	DOS	Delay (s)	LOS	95%'ile Queue (m)	DOS	Delay (s)	LOS	95%'ile Queue (m)
South (Hogbin Drive)	0.631	10.5	В	41.7	0.421	8.8	Α	20.7
East (Doug Knight Drive)	0.567	13.0	В	31.1	0.497	12.9	В	26.2
North (Hogbin Drive)	0.396	8.1	Α	20	0.642	11.5	В	47.3
West (Stadium Drive)	0.637	17.7	В	39.9	0.481	11	В	23

3.4.2 Site 2 - Hogbin Drive / Stadium Drive / Doug Knight Drive

The Hogbin Drive / Stadium Drive / Doug Knight Drive roundabout has been upgraded to provide two through lanes from the northern Hogbin Drive Road approach. This is likely to require the extension of the two lane southbound section on Hogbin Drive to reduce the impact of vehicles merging back to a single southbound lane. Figure 3.2 shows the proposed upgrades to the Hogbin Drive / Stadium Drive / Doug Knight Drive roundabout.

Figure 3.2: Site 2: Hogbin Drive / Stadium Drive / Doug Knight Drive Upgraded Layout

Table 3.7 summarises the SIDRA intersection modelling results for both AM and PM peak hour periods in 2022 with the proposed upgrades. The results indicate that the intersection performs adequately in both AM and PM peak periods.

Table 3.7: 2022 Site 2 – Hogbin Drive / Stadium Drive / Doug Knight Drive SIDRA Results

		202	22 AM			2022	2 PM	
Approach	DOS	Delay (s)	LOS	95%'ile Queue (m)	DOS	Delay (s)	LOS	95%'ile Queue (m)
South (Toormina Road)	0.697	8.6	Α	54.2	0.47	8.2	Α	23.5
East (Sawtell Road)	0.117	11.8	В	4.9	0.278	12.8	В	11.3
North (Hogbin Drive)	0.654	9.3	Α	47.5	0.567	7.5	Α	31.8
West (Sawtell Road)	0.648	13.6	В	35.1	0.306	10.1	В	11.9

3.4.3 Site 5 - Hogbin Drive / Orlando Street

The Hogbin Drive / Orlando Street roundabout has been upgraded to provide an additional through lane movement south-eastbound on Orlando Drive. Many intersection upgrades and configurations were tested for the roundabout with minimal success in improving performance. The primary issue with the roundabout is the northern Hogbin Drive approach on the bridge over the rail line. This approach is restricted to a single lane which is required to provide all movements. The proposed upgrade does not significantly improve this approach and as a result still results in failure. Figure 3.3 shows the proposed upgrades to the Hogbin Drive / Orlando Street roundabout.

Figure 3.3: Site 5: Hogbin Drive / Orlando Street Upgraded Layout

Table 3.8 summarises the SIDRA intersection modelling results for both AM and PM peak hour periods in 2022 with the proposed upgrades. The results indicate that whilst intersection performance has improved from the existing configuration, the north-eastern Hogbin Drive approach is still over capacity most significantly in the AM peak period.

Table 3.8: 2	022 Site 5 – Hogbin Drive	Orlando	Street SIDRA Results
--------------	---------------------------	---------	----------------------

		202	22 AM			2022	2 PM	
Approach	DOS	Delay (s)	LOS	95%'ile Queue (m)	DOS	Delay (s)	LOS	95%'ile Queue (m)
South-East (Orlando Street)	0.559	15.3	В	36.1	0.799	24.6	С	81.8
North-East (Hogbin Drive)	1.355	337.9	F	1085.8	0.962	31.9	С	165.7
North-West (Orlando Street)	0.876	29.9	С	114.1	0.774	25.4	С	72.9
South-West (Hogbin Drive)	0.720	11.8	В	60.1	0.855	17.4	В	101.2

The above results indicate that the north-eastern Hogbin Drive approach may require significant upgrades in the next 10 years which may only be improved by widening of the bridge. This high costs required for this may warrant further investigations into the use of other routes such as the Pacific Highway to reduce the demand on Hogbin Drive.

3.4.4 Site 6 - Harbour Drive / Earl Street

The Harbour Drive / Earl Street roundabout has been upgraded to provide a dedicated right turn lane from Earl Street to Harbour Drive. Figure 3.4 shows the proposed upgrades to the Harbour Drive / Earl Street roundabout.

Figure 3.4: Site 6: Harbour Drive / Earl Street Upgraded Layout

Table 3.9 summarises the SIDRA intersection modelling results for both AM and PM peak hour periods in 2022 with the proposed upgrades. The results indicate that the intersection performs adequately in both AM and PM peak periods.

Table 3.9: 2022 Site 6 – Harbour Drive / Earl Street SIDRA Results

		202	22 AM			2022	2 PM	
Approach	DOS	Delay (s)	LOS	95%'ile Queue (m)	DOS	Delay (s)	LOS	95%'ile Queue (m)
South-East (Harbour Drive)	0.493	6	Α	24.3	0.488	6.4	Α	24.4
North-East (Earl Street)	0.161	12.5	В	6.4	0.345	13.9	В	14.7
North-West (Harbour Drive)	0.514	8.1	Α	26.6	0.597	8.4	Α	35
South-West (Earl Street)	0.488	13.2	В	26.2	0.436	12.9	В	22.5

The pedestrian crossing over the south-eastern Harbour Drive leg of the roundabout was raised as a potential issue by Council due to the increased pedestrian activity from the recently constructed Coles development. The surveys indicated that less than 60 pedestrians used the crossing in any peak hour throughout the surveyed period. This volume of less than one pedestrian per minute on average is not expected to have a significant impact on the roundabout and does not warrant any further upgrades.

4. CONCLUSIONS

Bitzios Consulting was commissioned by Coffs Harbour City Council (CHCC) to analyse the major intersections on the Hogbin Drive corridor and the Harbour Drive / Earl Street intersection. CHCC has determined that the following roundabouts should be reviewed to determine the future operational performance and identify any upgrade requirements to meet future traffic demands and maintain an adequate level of service:

- Site 1 Hogbin Drive Sawtell Road Toormina Road;
- Site 2 Hogbin Drive Stadium Drive Doug Knight Drive;
- Site 3 Hogbin Drive Howard Street Albany Street City Hill Drive;
- Site 4 Hogbin Drive Harbour Drive;
- Site 5 Hogbin Drive Orlando Street; and
- Site 6 Harbour Drive Earl Street.

Traffic demands for each intersection were based on surveys undertaken by Traffic Data and Control (TDC) on Wednesday 28th and Thursday the 29th of November 2012. Future year (2022) intersection volumes were based on traffic growths determined from 2008 Council tube counts to 2012 intersection surveys volumes. The traffic growth rates were 3.4% compounding per annum in the AM peak period and 2.5% in the PM peak period.

SIDRA intersection modelling was used to assess intersection performance using failure criteria based on 'Degree of Saturation', 'Average Delay', 'Level of Service' and '95%ile Back of Queue' outputs.

The SIDRA intersection outputs indicated that in 2012 and 2022 the Hogbin Drive / Howard Street / Albany Street / City Hill Drive intersection and the Hogbin Drive / Harbour Drive intersection perfume satisfactorily.

The SIDRA intersection outputs also indicated that the remaining four intersections require upgrades by 2022 to improve performance. The following intersections upgrades are required for the intersections to perform satisfactorily in 2022:

- The Hogbin Drive / Sawtell Road / Toormina Road roundabout requires upgrades to provide two through lanes from the southern Toormina Road approach. This is achieved by upgrading Hogbin Drive northbound to include an additional lane on the exit of the roundabout.
- The Hogbin Drive / Stadium Drive / Doug Knight Drive roundabout requires upgrades to provide two through lanes from the northern Hogbin Drive Road approach. This may also require the extension of the two lane southbound section on Hogbin Drive to reduce the impact of vehicles merging back to a single southbound lane.
- The Harbour Drive / Earl Street roundabout requires upgrades to provide a dedicated right turn pocket from Earl Street to Harbour Drive.

The Hogbin Drive / Orlando Street roundabout was upgraded to provide an additional through lane movement south-eastbound on Orlando Drive. However, the proposed upgrade still results in failure in 2022. Many intersection upgrades and configurations were tested for the roundabout with minimal success in improving performance. The primary issue is the available capacity of the northern Hogbin Drive approach due to the single lane approach over the rail bridge which is required to provide for all movements. The results indicate that the north-eastern Hogbin Drive approach would require significant high cost upgrades for the intersection to perform satisfactorily. It is recommended to undertake further investigations into future traffic network planning of this area to assess options including alternate route upgrades.

APPENDIX A

TDC Traffic Surveys

Site ID: N/A

Location: Weather: Hogbin Dr & Sawtell Rd

Fine

Suburb: Coffs Harbour

Duration: 7:00am to 10:00am (Thursday) & 3:00pm to 6:00pm (Wednesday) Wednesday, 28 November 2012 & Thursday, 29 November 2012 Day/Date:

AM Peak 09:15 (hour ending) PM Peak 16:30 (hour ending)

Traffic Control: Roundabout

						Но	gbin Dr (Southbe	ound)												Sawt	ell Rd (Westbo	und)												Hogbin	Dr (No	rthbour	nd)											Sawtel	Rd (Ea	stbound	d)							Pedest	rians	
TIME		Movem (Left T				ovemer Throug			Move (Right	ment 3 t Turn)			ovemer (U Tur				rement eft Turn			Move (Thr	ment 5 ough)			Movem Right 1				vemen (U Turn				ement 7 t Turn)			Movem (Throu		M	ovemer	nt 9 Turn)	(Righ	Mover	nent 9a Tur		(U		rement 1 eft Turn)			Movem (Thro				ement ght Tur		Move	ment 12 Tu		(U	А	В	С	D
15 MINUTE PERIOD ENDING	Cars, Utities & Motorcycles	Light Trucks	Heavy Trucks		Cars, Utilities & Motorcycles	Light Indees	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cars, Utilities &	Matarcycles Light Trucks	Heavy Trucks	Cyclists	Cars, Utities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Matarcycles	Light Indees	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists Cars. Utilities &	Motorcycles	Light I flucks Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists Core Intinio 8	Motorcycles Light Tucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists Cars. Utilities &	Motorcycles Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	North	East	South	West
1 7:15 AM	14	1	0	0	32	6	1 0	16	0	0	0	0	0	0	0	В С	1	0	27	1	0	0	34	2	0	0	0	0	0 0	15	0	0	0	40	4	2	2	4	0 0	0	0	0	0	0	35 1	0	0	13	0	0	0	17 0	0	0	0	0	0	0	0	4	3	0
2 7:30 AM		2	0	0	40	2	0 3	8	3	0	0	0	0	0	0 1	1 0	0	0	23	0	0	0	28	0	0	0	0	0	0 0	10	0	0	0	74	3	2	1	4	0 1	0	0	0	0	0	30 1	1 2	2	8	2	0	0	12 0	0	0	0	0	0	0	0	3	2	0
3 7:45 AM	24	6	0	0	61	3	1 0	14	2	0	1	0	0	0	0 1	2 1	0	0	16	0	0	1	58	0	0	0	0	0	0 0	21	2	2	0	80	2	1	1	7	0 0	0	0	1	0	0	46 1	0	0	14	1	0	0	19 2	2 0	0	0	0	0	0	0	1	3	0
4 8:00 AM	33	0	0	0	68	1	0 0	18	1	2	0	0	0	0	0 1	1 1	- 1	0	33	2	0	0	63	5	0	1	0	0	0 0	30	3	1	0	121	0	0	2	12	1 0	0	1	0	0	0	51 1	0	1	17	1	0	0	25 1	1 1	- 1	- 1	0	0	0	0	4	3	0
5 8:15 AM	28	0	0	0	61	3	1 0	14	2	1	0	1	1	0	0 1	3 2	3	0	34	2	0	0	73	0	0	0	0	0	0 0	27	1	0	0	114	2	1	0	7	1 2	0	0	0	0	0	59 2	2 1	0	11	0	0	0	32 0	1	0	- 1	0	0	0	0	0	2	0
6 8:30 AM	23	0	0	0	73	1 :	2 0	8	0	0	0	4	0	1	0 1	0 0	0	0	30	0	0	0	78	2	0	0	0	0	0 0	35	0	0	0	168	3	3	3	12	0 1	0	1	0	0	0	65 1	3	0	17	1	0	1	85 0	1	- 1	0	0	0	0	0	0	0	0
7 8:45 AM	38	0	1	0	85	4	2 0	11	3	1	0	1	0	0	0 1	2 1	- 1	0	30	- 1	1	0	87	1	0	2	0	0	0 0	40	0	1	0	170	6	2	3	13	0 0	0	0	0	0	0	59 1	1 1	2	31	1	0	0	1 1	1 2	- 1	3	0	0	0	0	0	1	0
8 9:00 AM	48	0	0	1	80	2	6 0	22	1	0	1	4	1	0	0 1	1 1	0	0	43	0	0	2	99	0	0	3	0	0	0 0	50	2	1	0	136	2	4	2	15	0 0	0	1	0	0	0	59 1	0	2	36	2	0	0	58 2	2 2	0	- 1	0	0	0	0	0	3	0
9 9:15 AM	42	0	0	0	69	3	2 0	19	1	1	0	3	1	0	0 3	13 2	- 1	2	25	1	0	0	42	3	0	0	0	0	0 0	29	1	- 1	0	105	0	2	1	9	0 0	0	1	0	0	0	42 3	3 0	0	32	0	0	1 .	13 1	1 2	- 1	0	0	0	0	0	1	0	0
10 9:30 AM	36	1	0	0	63	6	1 0	23	1	0	1	0	0	0	0 2	4 0	0	0	21	1	0	3	51	0	0	0	0	0	0 0	39	1	- 1	0	93	2	1	0	9	0 1	0	3	0	0	0	45 0	0 0	0	20	0	0	0	11 1	1 1	0	0	0	0	0	0	2	3	0
11 9:45 AM	29	1	0	0	82	3	1 1	18	1	1	0	1	0	0	0 2	7 2	0	0	24	2	0	0	50	1	0	0	0	0	0 0	38	1	0	0	110	1	1	2	18	1 0	- 1	1	0	0	0	48 2	0 9	1	26	1	0	0	33 3	3 0	0	0	0	0	0	0	0	1	0
12 10:00 AM	55	1	0	0	76	5	0 1	23	2	0	0	0	0	0	0 2	3 0	- 1	0	32	0	0	0	65	0	0	0	0	0	0 0	28	3	- 1	0	80	3	1	0	17	1 0	0	3	0	0	0	26 1	1 1	1	22	1	0	0	12 3	3 1	0	2	0	0	0	0	0	0	0
3HR Total	386	12	-	-	790	7 0	- 40	194	17	9	3	4	8	- (106	10	80	2	338	10	-	9	728	4.	0	9	0 (> 0	, ,	362	41	80	0	1291	28	20	17	127	4 0	-	=	1	0	0	565	. 8	6	247	10	0	2	14	. E	4	8	0	0	0	0	15	21	0
Peak Hour Tota	1 2	0	-	-	307	2 \$	0	8	40	2	-	12	12	- (9	3 4	2	2	128	2	+	2	306	9	0	40	0 (0	0	154	3	9	0	579	11	=	6	8	0 +	0	3	0	0	0	225	4	4	116	4	0	2	4	7	3	4	0	0	0	0	-	4	0

											_							П							_										r																										-										\neg
							Hog	bin D	r (Sou	thbou	nd)														Sawt	ell Rd	(West	bound)													Hogbi	n Dr (f	Northb	ound)												Si	awtell	Rd (Ea	stboun	d)								Pedest	trians	
TIME			ement 1				ement				loveme			N	Novem		3			veme					nent 5				ement				oveme				Moven					nent 8		Move	ment 9		(Right	Move	ment 9		(U		Noveme				/ement				vemen		Mc	vemen			(U	Α .	В	С	
		(Left	ft Turn)			. (П	rough) .		(1	Right Tu	urn)			(U Tu	urn)			, (L	eft Tu	rn)			(Thro	ugh)			(Rigi	ht Turi	n)			(U Tur	n)			(Left 1	Turn)			(Thro	ugh)			. Tu	ırn)			Tu	ırn)			(Left Tu	rn)		(Т	hrougi	h)		(Ri	ght Tu	ırn)			Turn)				- 1	-	/ -
15 MINUTE PERIOD ENDIN	Sars, Utilities & Motorcycles	-ight Trucks	Heavy Trucks	Cyclists	Cars, Utilities &	ight Trucks	Heavy Trucks	Confine	Cars. Utilities &	Matarcycles	ight Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	-ight Trucks	Heavy Trucks	Sydists	Cars, Utilities &	ight Tacks		168vy I rucks	Cyclists	Cars, Utilities & Motorcycles	ight Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	-ight Trucks	Heavy Trucks	Votiese	Julian Cars. Utilities &	Motorcycles	ight Trucks	Heavy Trucks	Sydists	Cars, Utilities & Motorcycles	ight Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	ight Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Sydists	Cars, Utilities & Motorcycles	.ight Trucks	Heavy Trucks	Sydists	Cars, Utilities & Motorcycles	ight Trucks	leavy Trucks	Cyclists Cars, Utilities &	Motorcycles ight Taucks	donor Tracks	e de la company	Cars, Utilities &	Motorcycles	1	reavy irucks	Cars, Utilities &	Motorcycles jobt Taucks	agui indea	leavy Trucks	Cyclists	North	East	South	Nest
1 3:15 PM	47	0	0	2	92	. 0	3		1 :	30	1	1	1	1	0	0	0	33	1	1	2	0	21	2	0	0	45	4	2	1 3	2	0	0	0	0	39	1	1	0	97	1	5	1	25	0	1	1	3	0	0	0	29	1	0	0 2	8 () (0	1 :	32	2	0)	1 (0	0	0	0	0	0	0
2 3:30 PM	51	0	0	0	12	9 2	2		0 :	31	0	0	0	1	0	0	0	34	1 2	2	1	0	30	0	0	0	43	3	0	1	1	0	0	0	0	44	2	0	0	82	2	3	2	16	- 1	1	0	0	0	0	0	27	1	1	0 4	0 1		0	0 4	15	1	0		1 (0	0	0	0	0	0	0
3 3:45 PM		0	0	0	14:	2 1	3	- 1	2	50	1	0	0	1	0	0	0	21	1	1	1	0	31	1	0	- 1	41	- 1	- 1	(0	1	0	0	0	53	0	- 1	1	98	3	2	1	28	- 1	0	0	0	0	0	0	39	3	1	0 3	8 () (0	0	50	1	1	1	0 (0	0	0	0	0	0	0
4 4:00 PM		1	0	- 1	98	3	0	- 1	0 :	25	2	1	0	0	0	0	0	35	1	2	2	0	32	1	0	0	38	3	0	(0	0	0	0	0	51	0	0	0	89	1	0	1	14	0	0	0	1	0	0	0	32	1	0	0 4	2 () (0	0	32	2	1	1	0 (0	0	0	0	1	2	0
5 4:15 PM	59	2	0	1	10	В 3	2		0	48	0	0	0	0	0	0	0	34	1 (0	2	1	26	0	0	- 1	51	1	0		0	0	0	0	0	40	0	1	0	71	0	1	3	14	0	0	0	0	0	0	0	28	1	0	1 2	9 1		0	0 1	66	0	0	1	1 (0	0	0	0	4	0	0
6 4:30 PM	81	2	0	0	13.	2 3	2	- 1	2	48	2	0	0	0	0	0	0	33	3 ()	0	0	29	0	0	0	34	- 1	0	(0	0	0	0	0	41	0	0	1	83	0	0	2	21	0	0	1	0	0	0	0	31	0	0	0 3	7 () (0	0	53)	0)	0 (0	0	0	0	2	0	0
7 4:45 PM	82	2	0	0	12	9 2	0	- 1	2	63	0	0	0	1	0	0	0	30) ()	1	0	23	0	0	0	41	- 1	0	(0	0	0	0	0	49	0	0	1	90	4	1	0	24	0	1	0	2	0	0	0	23	1	0	0 3	6 () (0	0 4	15)	0	2	0 (0	0	0	0	9	2	0
8 5:00 PM	64	0	0	0	11	B 1	1		1 .	42	1	0	0	1	0	0	0	25		0	0	0	35	0	0	- 1	37	0	0	1	1	0	0	0	0	44	0	0	0	66	0	0	1	28	0	0	0	0	0	0	0	29	0	0	0 4	1 1		0	0 1	54	1	0)	1 (0	0	0	0	4	0	0
9 5:15 PM	63	0	0	1	12		5		1 1	52	1	0	0	0	0	0	0	16		0	0	0	24	0	0	0	51	0	0		0	1	0	0	0	31	1	1	1	85	2	1	1	13	0	0	0	0	0	0	0	23	1	0	0 4	1 () (0	1 4	16	0	0)	0 0	0	0	0	0	1	0	0
10 5:30 PM	93	2	0	2	13	4 0	0		0	62	0	0	1	1	0	0	0	28	8 (0	0	0	29	0	0	- 1	52	0	0		0	1	0	0	0	53	0	0	1	92	2	0	3	15	0	1	0	1	0	0	0	25	0	0	0 3	5 1		0	0 4	10	0	0)	0 (0	0	0	0	0	0	0
11 5:45 PM		1	0	1	12	2 1	3	- 1	2	35	0	0	0	0	0	0	0	25		0	1	0	32	0	0	0	39	0	0		0	0	0	0	0	41	0	1	0	77	0	1	0	7	0	0	0	1	0	0	1	27	0	0	0 3	0 () (0	0 :	32	1	0	1	0 (0	0	0	0	0	0	0
12 6:00 PM	56	1	0	0	99	1	0		0 :	30	0	0	0	0	0	0	0	25	1	1	0	0	15	0	0	0	38	0	0	- 0	0	0	0	0	0	46	0	0	1	78	2	0	2	22	0	1	- 1	4	0	0	0	27	0	0	1 3	3 () (0	0 :	30)	0	1	0 (0	0	0	0	0	0	0
3HR Total	782	£	0	80	1428	6	21	1	- :	is a	80	2	2	9	٥	0	0	345		. :	2	-	327	4	0	4	910	4	8	4		9	0	0	0	532	4	40	9	1008	17	4	17	722	2	9	69	12	۰	0	-	340	6	2	2 2	4	٥	1	7	Š °		, ,	1	* C	1	0 1	0	0	21	4	0
Peak Hour Tota	266	40	0	2	480	10	7	,	*	, .	5	-	0	-	0	0	0	130	e	,	n	-	118	2	0	2	164	9	-	0		-	0	0	0	185	0	2	2	341	4	3	7	77	-	0	,	,	0	0	0	130	9	-	1 46			-	9	27		7 0	, ,	- 0	> 0	0 (0	0	7	2	0

Site ID: N/A

Location: Weather: Hogbin Dr & Stadium Dr Fine

Suburb: Coffs Harbour

Duration: 7:00am to 10:00am (Thursday) & 3:00pm to 6:00pm (Wednesday) Wednesday, 28 November 2012 & Thursday, 29 November 2012 Day/Date:

AM Peak 09:00 (hour ending) PM Peak 16:30 (hour ending)

Traffic Control: Roundabout

						Ho	gbin Dr	(Southb	ound)												Doug	Knigh	t Dr (We	stboun	d)										Но	gbin Dr	(Northb	ound)										S	tadium l	Dr (East	oound)							Pedest	trians	
TIME		Move (Left				ovemer Throug				ment 3 t Turn)		1	Moven (U T	nent 3a Turn)	ı		Moven (Left 1				ovemen Through				ment 6 t Turn)			ovemen (U Turr			Move (Left	ment 7 Turn)			vement		Move	ment 9 Turn		ight Mov		9a urn)	(U		vement 1 eft Turn)			ovemen Throug			Moven (Right		Мо	vement 1	12a Furn)	(U	A	В	С	D
15 MINUTE PERIOD ENDI	Sars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Dydlists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Cars, Utities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Cars, Utities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Motorcycles	Light Trucks Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Dydists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Motorcycles	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles Light Taucks	Heavy Trucks	Dydists	Cars, Utities & Motorcycles	Light Trucks	Heavy Trucks Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists Cars, Utilities &	Matarcycles Light Trucks	Heavy Trucks	Cyclists	North	East	South	West
1 7:15 AI		0	0	0	69	3	1 0	28	0	0	1	0	0	0	0	0	0	0	0	0	0 0	0	1	0	0	0	0	0	0 0	14	3	2	1	87 :	3 2	0	0	0	0	0 0	0	0	0	22	0	0	4	0	0 0	2	3	0	0 (0	0	0	0	0	0	0
2 7:30 AI 3 7:45 AI			0	0	87 0F	2	0 0	36	1 2	1 1	0	0	0	0	0	2	0	0	0	0	0 0	0	1	0	0	0	0	0	0 0	12	0	1 1	0	107	6 1	. 0	1	0	0	0 0	0	0	0	32 (0	0	2	0	0 1	11	3	1	0 0	0	0	0	2	0	0	0
4 8:00 A		0	0	1	118	0	0 0	44	2	0	0	0	0	0	0	1	0	0	0	6	0 0		2	0	1	0	0	0	0 0	25	0	0		170	4 0	1	8	0		0 0	0	0	0	44 :		0	8	0	0 0	7	2	0	0 0		0	0	0	9	0	0
5 8:15 AI		0	1	0	120	5	1 0	55	3	0	0	0	0	0	0	2	0	2	21	2	0 0	0	4	0	0	0	0	0	0 0	34	3	1	2	182	3 0	0	3	0	1	0 0	0	0	0	63 1	1 1	0	16	0	0 0	17	0	0	0 0	0	0	0	0	0	0	0
6 8:30 AI			1	0	140	4	4 0	50	0	0	0	0	0	0	0	4	0	1	5	7	0 0	0	7	0	1	0	0	0	0 0	29	0	2	0	240	6 3	0	13	0	1	0 0	0	2	0	91 1	1 1	1	17	0	0 2	27	2	4	0 0	0	0	0	0	0	0	0
7 8:45 AI			4		171	1	6 0	31	4	0	0	0	0	0	0	4	0	5	0	9	2 0	0	6	0	0	0	0	0	0 0	26	2	6	0	249	3 2	0	30	1	3	0 0	0	0	0	77	0	0	33	0	1 0	31	1	1	0 (0	0	0	0	0	0	0
8 9:00 A			1	0	116	2	5 0	35	2	1	0	0	0	0	0	6	1	0	3	12	0 3	0	4	0	0	0	0	0	0 0	22	1	7	-	240 :	3 0	0	38	0	3	0 0	0	0	0	86 1	0	0	27	0	0 0	16	1	0	0 (0	0	0	0	0	0	0
9 9:15 AI			1	0	106	4	1 0	31	1	0	0	0	0	0	0	6	0	1	1	4	0 0	0	16	0	1	0	0	0	0 0	30	4	0	0	160	2 1	0	14	0	1	0 0	0	0	0	74	2 0	0	18	1	3 0	20	1	1	0 (0	0	0	0	0	0	0
10 9:30 AI		0	0	0	101	4	0 0	39	4	0	0	0	0	0	0	2	0	0	1	3	0 1	0	8	0	3	0	0	0	0 0	24	1	0	0	149	1 1	0	11	0	0	0 0	0	0	0	58 2	2 0	0	10	0	0 0	19	2	3	0 0	0	0	0	0	0	0	0
11 9:45 AI		0	1 1	0	114	1	0 0	35	3	0	0	0	0	0	0	12	0	1	3	8	0 1		9	1	0	0	0	0	0 0	21	3	0	0	163	1 0	0	14	0	1	0 0	0	0	0	46 2	2 0	0	12	1	1 0	24	0	0	0 0	0	0	0	0	0	0	0
12 10:00 A	M 19	0	0	-	13b	- 4	0 0	49	10	· 0	0	0	0	0	0	D 10	-	-	4 m	10	0 0) 2 N	- 0	-	1	0	0	0 0	0 0	22 m	B 80	10	10	141 . N 0	2 1	-	80	-	-	0 0	0	2	0	21 0	3 1 m	-	10	0 0	1 0	21	1	0	0 0	0	0	0	0	0	0	0
3HR Total	88	"	=	-	137:	e :	- -	8	12	"		_	_	_		4		+	8	9		"	99			_	-	- `		272	150	55	-	203	· ÷	1	135		-	- -	-		- 1	29	"		5	. ,	_ `	2	12	=			Ĭ	-		-	-	-
Peak Hour To	tal 8	2	7	0	547	5 5	0	171	o	+	0	0	0	0	0	16	+	00	83	8	2 6	0	21	0	-	0	0	0 0	0	111	9	16	2	15 4	- w	0	26	1	80	0 0	0	2	0	317	. 2	-	8	۰ ,	- 2	25	4	40	0 0	0	0	0	0	0	0	0

						Hog	bin Dr	(Southb	oound)												Doug I	Cnight	Dr (Wes	stbound	1)										н	logbin D	r (North	bound)											Stad	ium Dr (Eastbou	nd)						Pec	destrians	
TIME		Movemer (Left Tu				rement				ement 3 it Turn)			Novem (U Tu				oveme Left Tu				ement 5			Mover (Right	nent 6 Turn)			vement (U Turn)			Mover (Left				oveme		Mov	ement 9 Tu	(F irn)	Right N	loveme	nt 9a Turn)	(U	Moveme (Left Tu				ment 11 rough)	ı		vemen ight Tu		Move	ment 12 Tur		(U A	В	с	D
15 MINUTE PERIOD ENDING	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists Cars, Utilities &	Matarcycles Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Codists	Cars, Utilities &	Motorcycles Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Motorcycles	Light Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Matarcycles	Light Trucks	Heavy Trucks Cyclists	Cars, Utilities &	Light Trucks	Heavy Trucks	Cyclists	Motorcycles	Heav Tucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists Cars, Utilities &	Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	North	East	South	West
1 3:15 PM 2 3:30 PM 3 3:45 PM	10 13	0	0	0 1	19 5 32 0	1	0	56 41	4	3	0	0	0	0	0	12	0	0 0	13	3 0	0	0	27 22	0	3	0	0	0 0	0	19 55	5	7	1	160 131 184	1 2	3 0	7 20	0	2 4	0	0	0 0	0 0	41 46	1	0	0 1	0	0	0	31 29	0	5 0 7 0	0	0	0	0 0	0	0	0
4 4:00 PM 5 4:15 PM	10	0	2 2	0 1	57 2 54 4 51 5	2	0	57 57	3	0	0	0	0	0	0	3	0	0 3	3 10 3 25	0	0	0	22	0	0	0	0	0 0	0	18	0	2	0	149	4	2 0	6	0	0	0	0	0 0	0 0	51 54	2	0	0 4	0	1	1	21	2	0 0	0	0	0	0 0	0	0	0
6 4:30 PM 7 4:45 PM	13	0	1 0	0 2	10 2	0	0	88 49	4 2	0	0	0	0	0	0	13	0	2 0	9	0	0	1	22 26	0	1 0	0	0	0 0	0	17 25	0	1 0	0	116 135	2	0 0	6 2	0	0	0	0	0 0	0 0	52 54	4 2	1 0	0 6	0	1 0	0	31 33	1 0	0 0	0	0	0	0 0	0	0	0
8 5:00 PM 9 5:15 PM	10 8	0	0	0 1	51 2 88 3	0 3	0	51 65	1	0	0	0	0	0	0	8 15	0	0 0	6 10	0	1	0	15 18	0	0	0	0	0 0	0	12 18	0	0	0	113 127	1	0 0	8 10	0	1	0	0	0 0	0 0	40 60	2	0	1 3	0	0	1 5	21 32	1	0 0	0	0	0	0 0	0	0	0
10 5:30 PM 11 5:45 PM 12 6:00 PM	9 18 6	0	0	0 1	00 3 72 1 55 0	2	0	54 48 60	1	0	0	0	0	0	0	9 5 4	0	0 2 1 5	5 5	0	0	0	14 12 4	0	0	0	0	0 0	0	13 29 23	0	0		139 106 96	0	0 0	6	0	1 0	0	0	0 0	0 0	35 29 30	1 0	0	0 5	0	1 0	0 0	23 13 17	0	0 0	0	0	0	0 0	1 0	0	0
3HR Total	124	÷	80	0 9000	29	12	0	089	28	80	0	0	0	0	0	128	0	26	127	0	4	2	242	0	6	-	0	0 0	0	284	7	12	8	1596	6	- 0	92	0	13	0	0	0	0	541	21	6	52 2	0	9	80	303	o 9	2 0	0	0	0	0	-	0	0
Peak Hour Total	4	0	7	0 240	13	3	0	266	10	3	0	0	0	0	0	15	0	, 6	8	0	2	1	104	0	9	-	0	0	0	06	0	9	0	589	10	3	28	0	4	0	0	0	0	206	11	-	1 22	0	3	1	104	9	. 0	0	0	0	0	0	0	0

Traffic Data & COTITOT
Siss D: NA
Location: Hogden Dr & Howard St
Weather: Fore
Suburb: Caffs Hathour
Duration: 7-X0ban to 10:00am (Thursday) & 3:00pm to 6:00pm (Wednesday)
Duration: 7-X0ban to 10:00am (Thursday) & 3:00pm to 6:00pm (Wednesday)
Duration: Thursday, 29 November 2012
AM Peak 05:15 (hour ending)
PM Peak 16:30 (hour ending)
Traffic Cortect: Roundshout
Home

					Honbi	Dr (So	uthhour	d).					Т					Howard	St (Wes	thound)						Т					Hogbin	Dr /Nort	thhound										Cit	y Hill Dr	(Eaethou	ınd)									Δlb	any St (S	South-Ea	stbound)				\neg
TIME					nogo	(00	uunboun	٠,					_					1100001	. 01 (1103	iwound)											Hogom	D. (14011	unbound											.y D.	(Lustoot	and)									AID	uny or (c	Journ Lu	Jibounu)				
TIME		tovemen			vement 2			vement			ovement			Movem			Mover				ment 6		Mo	vemen	t 6a		Move	nent 7	M	ovement		ear		ment 9			ement 9			ovement 1		Moveme		(Left		ovement	12		vement 1		м	ovement	10	Movem		(Be		Moveme			lovement	
	'	(Left Turn	n)	(1	hrough)		(R	ght Turr	1)	(Ha	rd Right 1	Turn)		(Left T	urn)		(Thro	ugh)		(Bear R	ight Tur	n)	(R	ightTu	rn)		(Left	Turn)		Left	Turn)		(Thr	ough)		(Ri	ht Turn		(Har	rd Left Tu	m)		Turn)			(Through		(F	Right Turr	n)	(Ha	rd Left T	urn)		Left Tu	ırn)	(E	Bear Righ	t Turn)	(Ha	ard Right	ium)
15 MINUTE PERIOD ENDING	Cars, Utilities & Motorcycles	Light Trucks	feavy Trucks Syclists	Jars, Utities & Actor cycles	feavy Trucks	Syclists	dotorcydes	seaw Trucks	Syclists	Cars, Utities &	Jight Trucks feaw Trucks	Syclists	Cars, Utities & Motorcycles	Jight Trucks	seavy Trucks	Cars, Utilities &	Jight Trucks	feavy Trucks	Syclists Sars, Utilities &	John Trucks	feavy Trucks	Syclists	Actor cycles	John Trucks	spany mons	Cars, Utilities &	Light Trucks	feavy Trucks	Syclists Sans, Utilities &	Actor cycles Light Trucks	seavy Trucks	Sycilets Sars, Utilities &	Actoroydes Joht Trucks	feavy Trucks	Syclists	Actor cycles	feavy Trucks	Sycilets	Jans, Utilities &	Jight Trucks feavy Trucks	Syclists	Zars, Utilities & Actor cycles	ugit Index feavy Trucks	Syclists	Sars, Utities &	Jight Trucks feavy Trucks	Sycilets	Zars, Utities & Actor cycles	Jight Trucks feavy Trucks	Syclists	Cars, Ubities & Actorcycles	Jight Trucks Heavy Trucks	Sycilets	Cars, Utities &	Light Trucks	feavy Trucks	Cars, Utilities & Antorroy des	Jight Trucks	feavy Trucks Syclists	Cars, Utities &	Light Trucks	Syclists
1 7:15 AM 2 7:30 AM	5	1 0	0 0	67 100	2 1	1 0	0	0 0	0	14	0 0	0 0	3	0	0	0 0	0	0	0 3	2	0	0	6 :	3 (0 1	0	0	0	0 3	B 3 B 2	1 0	0 5	2 0 6 3	2 3	1 0	0 0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	5	0 0	0	3	0	1 0	19	1 0	0 0 0	0	0 0	0 0
3 7:45 AM	2	1 (0 1	114	7 3	0	0	0 0	0	15	2 0	0 0	3	0	0	0	0	0	0 4	0	0	0	7	1 (0 0	0	0	0	0 5	В 2	0	2 10	12 2	-1	0	0 0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	9	0 0	0	3	0	0 1	52	2	1 0	0	0 (j 0
4 8:00 AM	4	0	1 0	145	5 0	3	0	0	0	30	0 0	0 0	4	0	0	0	0	0	0 4	0	0	0	6 (0	1 0	1	0	0	0 10	15 1	0	0 12	19 3	2	0	0 (0	0	0	0 0	0	1	0 1	0	0	0 0	0	0	0 0	0	8	0 0	0	2	0	0 0	54	1	0 0	0	0 (/ 0
5 8:15 AM 6 8:30 AM	6	2 1	0 0	140	7 1	0	0	0	0	29	0 0	0 0	3	0	0	0	0	0	0 3	0	0	0	7	1 (0 0	1 0	0	0	0 8	3 2	1	2 13	3 2	0 7	0	0 0	0	0	1	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	14	0 0	0	6	0	0 0	49	0	2 1	0	0 1	. 0
7 8:45 AM	2		0 0	155	7	0	0	0	0	20	0 2	2 0	3	0	0	0	0	0	0 3		0	0	6			1	0	0	0 1	6 0	0	3 19	0 4	1 2	0			0	- 1	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	19	0 0	0	0	0	0 0	94	3	3 0	0	0 1	
8 9:00 AM	9	1 (0 0	145	4 6	0	0	0 0	0	14	0 1	1 0	3	0	0	0	0	0	0 3	0	0	0	5	1	1 0	1	0	0	0 1	9 0	2	1 18	12 1	3	0	3 (0	0	o	0 0	0	0	1 0	0	0	0 0	0	0	0 0	0	18	1 0	0	6	0	0 0	69	0	1 2	0	0 0	0 6
9 9:15 AM	3	0 (0 0	121	2 2	1	0	0 0	0	14	0 0	0 0	- 1	0	0	0 0	0	0	0 2	0	0	0	4 (0 (0 0	0	0	0	0 13	0 0	0	0 16	4 2	5	0	3 (0	0	0	0 0	0	1	0 0	0	0	0 0	0	1	0 0	0	13	0 0	0	7	0	0 0	53	2	0 0	0	0 (0 (
10 9:30 AM	0	0 (0 0	99	3 0	0	0	0 0	0	13	0 0	0 0	9	0	0	0	0	0	0 3	0	0	0	4	1 (0 0	0	0	0	0 7	B 1	1	0 13	3	6	0	2 (0	0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	14	0 0	0	- 1	0	0 2	58	1	0 0	0	0 (, 0
11 9:45 AM	3	1 (0 0	125	3 1	0	0	0	0	15	0 0	0 0	- 1	0	0	1	0	0	0 4	0	0	0	6	1 (0 0	0	0	0	0 6	9 0	0	0 14	10 1	2	0	3 (0	0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	16	0 0	0	4	1	1 1	45	0	0 0	0	0 (/ 0
12 10:00 AM	2	0 (0 0	133	1 0	0	0	0	0	18	0 0	0 0	4	0	0	0	0	0	0 5	0	0	0	9 .	1 (0 0	- 1	0	0	0 8	2 3	0	0 13	4 2	1	0	0 (0	0	1	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	15	0 0	0	- 6	0	0 1	61	0	0 0	0	0 (. 0
3HR Total	25			1501	3 8	40	0 0			509	8 6	, , ,	43	0	- 0		۰	°	0 9	4		-	9 4		, -	40	0	0	0 6133	\$	ω	0 2	25	36	-	2	-	۰	ω .	° °	۰			0	°	0 0	l °		0 0	0	154	0 0	0	43	-	9 2	674	-	0 0	°	0 0	0
Peak Hour Total	24	2 0	0	578		*	0 0	0	0	69	0 6	, 0	13	0	0 0	0	0	0	0 21	1	٥	0	22	2 0	0	2	0	0	0	-	e	722		19	0	7	,	0	2	0 0	0		. 0	0	0	0 0	0	+	0 0	0	62	- 0	0	15	0	0 0	301	9	2 6	0	0 0	

					Hog	bin Dr (Southbo	und)											н	oward	St (We	stboun	d)												Hogbir	n Dr (No	orthbou	nd)											С	ity Hill	Dr (East	bound)												Alban	y St (S	outh-Ea	astbou	nd)					
TIME		ovement 1 Left Turn)	1		ovement Through	2		Movem (Right 1				ement 3 Right Tu			Mover (Left				weme			Mo (Bear	vemen Right			Move (Rig	ment (Ba I)			ement ft Turn)		Mov	rement Left		Bear		ovemer Throug				ment 9 it Turn			Moveme lard Lef			loveme	nt 11 Turn)	(Li	eft	Mover (Thre		2		ovemer Right T				ement Left Tu		Mov	ement Let	11 t Turn)	(Bea			ment 12 ight Tu			Movem ard Rig		
15 MINUTE PERIOD ENDING	Cars, Ubities & Motorcycles	Light Trucks Heavy Trucks	Cyclists	Cars, Utities & Motorcycles	Light Trucks Heavy Trucks	Cycles	Cans, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cycles Cars, Ubities &	Motorcydes Light Trucks	Heavy Trucks	Cycles	Cars, Utities & Motorcycles	Light Trucks	Heavy Trucks	Cycles	Motorcy des	riduc mores	swan i raws	Cycrosis Cars, Ubities &	Motorcydes Linht Trucks	Heavy Trucks	Cociss	Cars, Utities &	Light Trucks	Heavy Trucks	Cyclete	Cars, Utilities &	Light Trucks	Heavy Trucks	Cyclets	Cars, Utities & Motorcy des	Light Trucks	Heavy Trucks	Cycles	Motorcy des	Light Trucks	Cycles	Cars, Utilities &	Light Trucks	Heavy Trucks	Cycles	Cans, Utilities & Wotorcycles	Light Trucks	Heavy Trucks	Cycles B	Motorcycles	Ught Trucks	Cuelate	Cars, Utifies &	Light Trucks	Heavy Trucks	Cycles	Cars, Utifies & Motorcycles	Light Trucks	Heavy Trucks	Cycless Cars, Ubities &	Motorcycles Lobe Transles	Heavy Trucks	Cyclete	Cars, Utifies &	Light Trucks	Heavy Trucks	Cycles	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclsts	Cans, Utilities & Wotorcycles	Light Trucks	Heavy Trucks	Cyclets
1 3:15 PM 2 3:30 PM 3 3:45 PM	6	0 0 1 0 0	0	149 150 181	4 1 3 4 4 3	0 0	0 0	0	0	0 3	6 1 3 1 3 0	1 1	0	7 5 4	0 0	0	0	0	0	0	0 :	2 0	0	0	4 4 6	0	0	0	0	0	0	0	64 76 91	1 1	2 2 0	0	139 123 174	3 : 0 : 6 :	0 0	2	0	0	0	0	0	0 0 1	0	0	1 1	0 0	0	0	0	0	0	0	0	0 2	17 : 10 (16	1 1	0	3 5 6	0	0	0	90 84	1 1 2	0 3	1 1	0 0 0	0 0 0	0	0
4 4:00 PM 5 4:15 PM 6 4:30 PM	7 3	0 0	0	162 149	5 4	0	0	0	0	0 1	1 0	1 0	0	3 2	0	0	0	0	0	0	0 :	2 0	0	0	7 4	0	0	0	0	0	0	0	78 92	1	1	0	162 194	1 :	0	1	0	0	0	0 2	0	0	0	1 1	0 1	0 0	0	0	0	0	0	0	0	0 1	7 0	0	0	6	0	0	0	79 88	1 2	1	1 0	0	0 0	0	0
7 4:45 PM 8 5:00 PM	3 5	0 0	0	158	6 2 6 1	0	0 0	0	0	0 2	5 0	0	0	1 6	0	0	0	0	0	0	0		0	0	7 9	0	0	0	0	0	0	0	82 75	0	0	0	130	5 :	0	2	0	0	0	1 0	0	0	0	1 0	0 1	0 0	0	0	0	0	3	0	0	0 1	7 0	0	0	2 4	0	0	0	87 55	0	0	0	0 0	0 0	0	0
9 5:15 PM 10 5:30 PM 11 5:45 PM	3 5	0 0	0	180 159 145	3 2 3 0 2 1	1 1	0	0	0	0 1 0 1	9 0 7 0 5 0	0	0	5 4 2	0	0	0	0	0	0	0 :	3 0	0	0	5 2	0 0	0	0	0	0	0	0	75 71 43	1 0	0	1 0	150 154 109	1 1	0	1 3	0	0	0	0	0	0	0	0	0 1	0 0	0	0	0	0	1 0	0	0	0 2 0 1	16 0 12 0 19 0	0	0	1 4	0	0	0	126 92 66	0 1	0	0 4 0	0	0	0	0
12 6:00 PM 3HR Total	2 5	0 0	0	146	1 0	σ	0	0	0	0 1	0 1	4	2	1 4	2 0	-	0	0	0 1	0	3 0	; 0	. 0	. 0	3	- 0	0	0	0	0	0	0	40	4	7	-	97	0 1	0	2	0	0	0	11 0	0	- 0	0	φ c	0 0	0 0	0	1	0	0	13	0	0	0 1	20 0		0	9	0	0	0	36	11	1	7	0	0	0	0
Peak Hour Total	22	0 0	٥	688	21	2	0	0	0	2 2	. 0	2		16	1	٥	0	0	,	,	5		۰		23	٥	0	۰	0	٥	۰	٥	355	2	ю	0	674	21	. 0	4	٥	0	0	o	٥	-	0	17	- 0	0	0	0	0	0	60	0	٥	0 3	5 "	0	٥	20	0	۰	0	327	6	10	2	0	0	0	٥

Site ID:

Location: Weather: Hogbin Dr & Harbour Dr Fine

Suburb: Coffs Harbour

Duration: 7:00am to 10:00am (Thursday) & 3:00pm to 6:00pm (Wednesday) Wednesday, 28 November 2012 & Thursday, 29 November 2012 Day/Date:

AM Peak 09:00 (hour ending) PM Peak 16:30 (hour ending)

Traffic Control: Roundabout

						Н	ogbin D	r (South	bound))										Harb	our Dr (Westbou	nd)									н	ogbin Dr	(Northbo	und)										Harbour	Dr (Eas	tbound)						P	edestria	ns	
TIME		Moveme (Left Tu				oveme				ement 3 ht Turn)			ovemen (U Turn			Move (Left	nent 4 Turn)			vement (vement ight Turn			vement 6 (U Turn)	ia		ovement Left Turn			lovemer (Throug		Moven	nent 9 Turn)		Move	ment 9a Turr		(U	Movemen (Left Tu			Moveme (Throu			Moven (Right	nent 12 t Turn)	Мс	vement	12a Furn)	(U	A E	в	С В	Ī
15 MINUTE PERIOD ENDING	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Dydists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists Core Ibiliana 8	Motorcycles Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Heavy Trucks	Cyclists	Cars, Utities & Motorcycles	Light Trucks Heavy Trucks	Dydists	Cars, Utilities & Motorcycles	Light Trucks Heavy Trucks	Dydists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks Cyclists	Cars, Utities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cars, Utilities &	Light Trucks	Heavy Trucks	Cyclists Cars, Utilities &	Motorcycles Light Trucks	Heavy Trucks	Dydists	North	East South	South	
1 7:15 AM 2 7:30 AM 3 7:45 AM 4 8:00 AM 5 8:15 AM 6 8:30 AM 7 8:45 AM 8 9:00 AM	5 11 9 13 22 36 34 40	0 0 1 1 0 0	1 0 1 0 1 1 1 0	0 0 0 0 0 1 1	43 64 64 104 118 137 127 147	2 2 3 0 2 5 5	1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1	3 12 0 37 0 40 2 29 1 22 2 27 1 30 0 21	2 3 3 1 3 2 1 1	1 0 1 0 0 1 0 2	0 1 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 7 7 3 3 0 2 9 9 4 3 3 5 6 8 8	0 0 0	00000000	0 0 0 0 0	48 3 52 3 63 1 75 4 122 2 109 3 102 1 101 2 62 0	0 0 1 0 0 0 1 1 3 3 1 1	2 1 2 0 0 0 0	18 40 53 58 85 74 59 78	1 0 2 0 1 0 1 0 3 0 4 0 0 0 1 1	1 2 1 2 1 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000000	17 20 29 49 32 29 37 34 24	0 0 0 2 0 4 2 0 0 3 0 1 1 4 6 2 0 1 0 0	0 2 0 1 0 0 0	45 51 50 50 57 69 72 47	2 2 5 2 1 2 3	0 0 0 2 0 0 2 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0	16 14 27 42 13 38 48 66 75	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 18 0 21 0 29 0 44 0 35 0 29 0 39 0 31	0 2 6 1 3 3 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0	50 63 77 85 99 106 100 87	1 6 1 2 1 2 4 2	0 0 1 0 1 1 4 2	0 9 2 0 0 0 4 5 2 0 0 0 16 2 18	1 0 0 2 2 2 0 0	0 0 0 0 0 4 2	0 0 1 1 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 0 0 0 0 0 0 2 2 4 4 4 4 4 1 1 1 0 1	
10 9:30 AM 11 9:45 AM 12 10:00 AM	23 29 17	1 0 0	2 0 1	0 0 1	102 95 106	2 8 2	0 0	0 25 1 26 2 39	1 0	0 0 1	1 0 0	0 0	0 0	0 1	9 3	0 0 1	0	0 0	63 4 80 4 70 0	0	0 0 1	49 38 67	1 0 1 0 0 0	0 0 1	0 0	0 0 0	0 0	24 31 34	1 0 1 0 2 0	1 0 1	32 58 45	2 3 1	0 0 0 0 1 0	53 52 63	0 0	1 1 0 1 0 1	0	0 0	0 0	0 22 0 31 0 35	1 1 2	0 1 0 0 0 1	77 93 97	0 3 1	0 0	0 8 0 16 1 9	0 0 2	1 1 0	0 0	0 0	0	0 0	0 0	0 0	0 0 1 0 0	
3HR Total	269	4	6	3	1220	38	9	329	17	7	2	0	0 0	0 0	62	-	0	0	27	9	8	684	1	10	0 1	0 0	0		21	9	909	25	12	507	0	9 9	0	0	0	380	27	0 4	1018	25	10	98	8	6	9	,	2	0	11	5	13	Ī
Peak Hour Total	132	0	3	-	629	17	ω ,	100	7	-	2	0	0 0	0 0	21	0	0	0	434	4	0	296	0 -	2	0	0 0	0	132	7	0	245	80 6	0	165	0	0	0	0	0	134	13	0	385	6	80 ,	. 8	2	7	1	0	2	0	= 0	5	= =	

						Но	gbin [Or (Sou	thbou	nd)													Harb	our D	r (Wes	tbound	i)												Нос	jbin Dr	(Northb	oound)												На	rbour	Dr (Eas	stboun	d)							Pe	edestria	ans	
TIME		Moveme (Left Tu				ovemer Throug				lovemen Right Tu				vemer (U Tur				Mover (Left				Mover (Thro		•			ement ht Turi				vement U Turn				vement eft Turn				ement rough)		Move	ment 9 Tu	ırn)	(Right	Mover	ment 9a Tui		(U		lovemen (Left Tu				ement hrough				ement ght Tu		Мо	vement	t 12a Turn)		[U A	В	В	с	D
15 MINUTE PERIOD ENDING	Cars, Utilities & Motorcycles	ight Trucks	leavy Trucks	Sydists	Cars, Utilities & Votorcycles	ight Trucks	teavy Irucks	Cyclists Cars. Utilities &	Motorcycles	Light Trucks	odiese Control	cyclists Cars, Utilities &	Motorcycles	ignt Trucks	leavy Trucks	Sydists	Cars, Utilities & Votorcycles	ightTrucks	leavy Trucks	Cyclists	Cars, Utilities & Motorcycles	ight Trucks	Heavy Trucks	Cyclists	Cars, Utilities &	ight Trucks	Heavy Trucks	Conflicte	Cars, Utilities &	Motorcycles jobs Taucke	Heavy Trucks	Notices	Cars, Utilities &	ight Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	ight Trucks	leavy Trucks	Sydists	Cars, Utilities & Motorcycles	ightTrucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	ight Trucks	Heavy Trucks	Sydists	Sars, Utilities & Votorcycles	-ight Trucks	leavy Trucks	cyclists Cars, Utilities &	viotorcycles ight Trucks	leavy Trucks	. Ovdists	Cars, Utilities &	viotorcycles ight Trucks	denvy Turks	Ovdists	Cars, Utilities &	Motorcycles ight Trucks	dense Trucke	Ovdists	Vorth	9	1885	South	Nest
1 3:15 PM 2 3:30 PM	22	0	0	0	116	7	4	2	26	0 0		0 0	0	0	0	0	10	0	0	0	98	5	2	4	66	2	3	Ĭ,	0 1	0 1			0 4	1	0	0	62	2	0	2	59	0	0	0	0	0	0	0	42	1	0	0 10	01 1	0	3	2	6 2		1		0		0 0	6	0	0	0	0
3 3:45 PM	29	0	3	0	126	5	4	4	39	3 1	í	0 0	0	0	0	0	10	0	0	0	93	0	1	0	48	2	0		0	0			0 59	2	4	0	85	2	4	0	39	0	4	0	0	0	0	0	55	2	3	0 10	02 1	7		2	1 0		2 0		0		1 0	11	1 6	0	0	0
4 4:00 PM	22	1	1	0	135	4	2	0	44	0 ()	0 0	0	0	0	0	9	0	0	0	92	3	2	0	60	0	0		0 (0 () (0 2	3	2	0	80	3	3	0	34	- 1	0	- 1	0	0	0	0	29	3	1	0 10	01 1	3		9	9 1	1	1 1		0) (0 0	4		0	0	0
5 4:15 PM	24	0	0	1	136	4	1	0	45	0 0)	0 0	0	0	0	0	6	0	0	0	78	0	1	0	59	3	0	9	0 1	0) (0 4	0	3	0	68	1	0	0	32	0	1	3	0	0	0	0	47	3	0	0 9	2 1	0	1	4	1 0		0	0	0	1	0 0	5	1	1	1	0
6 4:30 PM 7 4:45 PM	19	0	0	1	124	2	1	0	37	3 (1 2	2	0	0	0	6	0	0	0	128	5	0	0	49	2	0	1 3	0 1	0 1			0 39		1 1	0	78	1	0	0	13	0	1	1	0	0	0	0	47	2	1	0 9	9 8	0		1					0		0 0	5		0	1	0
8 5:00 PM	13	o	ŏ	0	134	2	0	3	22	2 0	5	0 0	0	0	0	0	3	0	0	0	89	1	2	2	50	3	0	1	0 0	0	ه ا ه		3	0	3	1	64	2	1	0	28	0		3	0	0	0	o	33	3	0	0 8	1 2	0		1	1 0				0		0 1	11		ŏ	0	0
9 5:15 PM	9	0	0	0	144	3	0	3	29	2 (1 (0	0	0	0	10	0	0	1	91	-1	2	3	48	1	0	1	2 (0	0		5	2	0	0	78	0	2	- 1	19	0	0	0	0	0	0	0	57	1	0	0 10	01 0	1	4	. 7	7 0		0	0	0) (0 0	0		0	0	0
10 5:30 PM	11	0	0	0	143	0	0	0 :	21	2 ()	1 0	0	0	0	1	5	0	0	0	112	0	0	3	39	1	0	1	2 (0 () (0 2	2	0	0	96	0	0	0	7	0	0	0	0	0	0	0	27	2	0	0 10	07 0	0	0	0	0		0	0	0) (0 0	0	0	0	1	0
11 5:45 PM	18	0	0	0	122	1	0	1 :	20	1 ()	0 0	0	0	0	0	8	0	0	0	98	2	1	2	34	0	1	9	0 1	0	0 0	1 9	0 31	0	0	2	78	2	1	1	19	0	0	0	0	0	0	0	39	0	0	2 8	3 0	1	1	1-	4 1		0) (0	1	0 0	0		0	0	0
12 6:00 PM	· 7	-	9	0	109	0 0	0	0	9	0 (. 4	0 0	N C	0	0	- 0	7 0	-0	0	-0	1111	7	-0	9	56 o	j 1	9		0 0	2 0) (0 3	1 1	0	0	70	- 0	- 0	10	17 m	-0	0	0	0	0	0	0	34	ල (Φ 0	0 8	7 0	0	-	00	, 4	9) 1	. 0	0	-	0 0	9	-	-	1	0
3HR Total	2		-		20	m :	-	=	8	÷ .			. `								116	22	+	1 =	828	1 =		1.					88	1 -2	=		9	1=	1 -	"	33	`		~	_			-	8	61	- `	1155	1 =	=	+	=	`	1		1	ľ			4			-	-
Peak Hour Total	2	-	4	2	541	ф (10	9	8	4 -		- 6	4 0	0	0	0	8	0	0	0	391	8	4	0	262	7	0	0	3 6	, ,	0	0	174	9	10	0	311	Ξ	7	0	118	-	9	0	0	0	0	0	166	o .	4 (394	Ξ.	10	2	1 25	; -		, -	. 0	0		- 0	23	-		2	0

Site ID:

Location: Weather: Hogbin Dr & Orlando St

Suburb: Coffs Harbour

Duration: 7:00am to 10:00am (Thursday) & 3:00pm to 6:00pm (Wednesday) Wednesday, 28 November 2012 & Thursday, 29 November 2012 Day/Date:

AM Peak 09:15 (hour ending) PM Peak 16:45 (hour ending)

Traffic Control: Roundabout

						Orland	lo St (So	uthbou	nd)											Hogl	bin Dr (Vestbou	nd)										Orlar	ndo St (f	Northbo	und)										Hogbi	n Dr (Ea	stbound)						Pedest	trians	
TIME		Aoveme (Left Tu				ement 2 rough)			lovemer Right Tu				ement 3 J Turn)	a		Moveme (Left Tu				ement 5 rough)			ovemer Right Tu			Movem (U Tu				ment 7 Turn)			rement 8 hrough)		Movem	ent 9 Turn)	(Right	Movemer	nt 9a Turn)	(U		lovemen (Left Tur			Moven (Thro				ement 1: ht Turn)		Moveme	ent 12a Turn)	(U	A	В	С	D
15 MINUTE PERIOD ENDIN	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists Cars, Utilities &	Motorcycles Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Dodiese	Cars, Utities &	Matarcycles Light Trucks	Heavy Trucks	Cyclists	Cars, Utities & Motorcycles	Light Trucks	Heavy Trucks	Cars, Utities &	Matarcycles Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks Cyclists	Cars, Utities & Motorcycles	Light Trucks	Heavy Trucks	Cars, Utilities &	Light Trucks	Heavy Trucks	Cyclists	Motorcycles Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks Heavy Trucks	Dydists	Cars, Utilities & Motorcycles	Light Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Cyclists	Cars, Utities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists Cars, Utilities &	Motorcycles Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks Heavy Trucks	Dydlists	North	East	South	West
1 7:15 AM 2 7:30 AM 3 7:45 AM	5	0	0	0 1	19 3 36 2	0	0	32 46	1 4	0 0	0 0	0	0	0	11 22	1	0	0 40	0 4 4 3	0	3 2	8 7	0 2	0 0	0	0	0	0 4	0	0	0	18 2 20 2	0	0	14	1 1 0 0	0	0	0 (0 0	18 44	5 (0 2	33	3	0	1	4 0 5 0	0	0	0	0 0	0	0	0	0	0
4 8:00 AM 5 8:15 AM	6	0	0	0 3	38 0 47 3	0	0	60 65	4 4	0 0	0 0	0	0	0	24	1	1 3	0 69	9 3	0	3	12	0	0 1	0	0	0	0 9	0	0	1 0	33 2 24 0	1 0	2	13	2 1	0	0	0 0	0 0	67 35	1 0	2	62	2	0	0	7 0	0	0	0	0 0	0	0	1	0	4
6 8:30 AM 7 8:45 AM	9 4	1 3	0	0 6	53 2 57 2	5 4	0	69 59	3	1 (0 0	0	1 0	0	49 31	2	1	2 10 0 90	11 1 0 1	0	0	14 8	0	0 1	0	0	0	0 8	1 0	2 4	0	33 3 31 1	1	0 2	20 27	1 0	0	0	0 (0 0	51 49	1 0	1 1	80 106	3 2	1 0	0	16 0 13 0	1 2	0	0	0 0	0	0	0	4 2	1 0
8 9:00 AM 9 9:15 AM 10 9:30 AM		0	0	0 7	76 2 70 2	0	2	60 46	1 2	1 1	0 1 0	0	0	0	45 43	1	1	0 93	3 1 6 2	0	0	9 12	0	0 0	0	0	0	0 9	0	0	0	44 1 49 2	2	0	40 38	0 0	0	0	0 0	0 0	45 36 38	1 (0 0	106	3	0	0	10 1	0	0	0	0 0	0	2	2	0	2
11 9:45 AM 12 10:00 AM	13	2	0	0 4	44 1 50 4	0	0	45 26	3	0 0	0 1	1	0	0	31 51	1 0	0	0 83	3 0	0	1 0	7	0 2	0 0	0	0	0	0 8	0 2	0	0	37 2 47 2	0	0	33 48	1 0	0	0	0 1	0 0	31 56	1 0	0 0	100	0	0	0	12 1	0	0	1 0	0 0	0	1	2	1 0	0
3HR Total	4.0	1	0		26	11	3	40	. 2			2		0	3		0 0	942	23	0	12	12	-	3 10		_	0	÷		9		401	9	Ĺ	3	-	10		0 0	0	40	22		101	-	-	2	2 2		0		0 0		9	15	13	5
Peak Hour Tota	1 8	4	0	0 0	8 8	6	2	234	9 (, -	- -	0	-	0	168	7	4 (370	10	0	2	84	4 ,		-	0	0	0 4	-	9	1	157	4	2	125	4 0	-	0 0	0 0	0	181	ω «	9 8	434	Ξ	-	-	8 -	6	0	8	0 0	0	2	3	7	40

						Orlan	do St (Southb	ound)												Но	gbin D	r (Wes	tbound)											Orland	o St (N	orthboun	nd)											Hogb	in Dr (E	astboun	d)							Pedestria	ins
TIME		Moveme (Left Tu				ement 2 rough)			Moven (Right				loveme (U Tu				loveme (Left Tu				rement nrough				ement 6			Movem (U Tu				vement eft Turn			Mover (Thro		N	lovemen	t 9 Turn)	(Righ	t Move	ment 9a		(U		ovement Left Turn			Movem (Thro				vemen ight Tu		Move	ment 12 Tur		(U	А	В	СВ
15 MINUTE PERIOD ENDING	Cars, Utilities & Motorcycles	-ight Trucks	Heavy Trucks	Cars, Utilities &	ight Trucks	leavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Sydists	Cars, Utilities & Motorcycles	-ight Trucks	leavy Trucks	Sydists	Motorcycles	Light Trucks	leavy Trucks	Cars, Utilities &	Motorcycles ight Trucks	Heavy Trucks	Cyclists	Cars, Utilities &	ight Trucks	leavy Trucks	Cyclists	Cars, Utilities & Motorcycles	.ight Trucks	Heavy Trucks	Syclists Cars, Utilities &	Motorcycles ight Trucks	leavy Trucks	Cyclists	Cars, Utilities & Motorcycles	ightTrucks	Heavy Trucks	Sydists	Votorcycles Motorcycles ight Taucks	feavy Trucks	Sydists	Cars, Utilities & Motorcycles	-ight Trucks	Heavy Trucks	Cyclists	Sars, Utilities & Motorcycles	ight Trucks Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	-ight Trucks	Heavy Trucks	Sydists	Votorcycles	-igni inces	Cyclists	Cars, Utilities & Motorcycles	ight Trucks	Heavy Trucks	Sydists	Yorth	East	South Nest
1 3:15 PM	11	0	0	0 3	4	0	0	52	4	1	0	0	0	0	0	36	2	1	0 8	4 1	2	1	18	3 0	0	0	0	0	0	0	15 0	0	0	48	2	0	0	44 (0	1	0	0	0	0	34	1 1	0	109	2	0	0	13	1	1 0	0	0	0	0	0	0	5 0
2 3:30 PM	11	0	0	1 5	3	1	0	38	3	0	1	1	0	0	0	35	0	1	1 8	5 0	0	1	10	0	0	0	1	0	0	0	14 0	0	0	35	2	0	0	45 0) 2	0	0	0	0	0	47	2 1	0	119	0	0	0	8	0	1 0	0	0	0	0	0	2	0 0
3 3:45 PM	15	1	0	0 3	0	3	1	50	2	1	0	1	0	1	0	33	1	1	1 7	9 1	0	0	18	3 0	0	0	0	0	0	0	4 1	1 0	0	46	0	6	1	40 0	0	0	1	0	0	0	79	4 1	1	103	0	0	2	11	0	0	1	0	0	0	0	4	0 0
4 4:00 PM	21	3	0	1 3	0	2	1	50	0	1	0	1	0	0	0	27	0	1	0 9	8 3	1	0	13	3 0	0	0	0	0	0	0	12 0	0	0	57	4	0	0	46 1	1 2	0	0	0	0	0	46	0 0	1	125	0	0	0	10	0	0 0	- 1	0	0	0	0	0	1 0
5 4:15 PM	34	0	0	1 4	0	0	0	53	1	0	0	1	0	0	0	33	1	0	0 9	1 1	1	2	13	3 0	0	0	0	0	0	0	12 0	0	0	58	4	1	0	42 () 1	0	0	0	0	0	62	0 0	3	142	1	0	0	17	0	0	0	0	0	0	0	0	0 1
6 4:30 PM	16	1	0	0 5	0	0	0	48	1	0	0	0	0	0	0	28	0	1	0 10	09 2	0	0	12	2 1	0	0	0	0	0	0	10 3	3 0	0	53	0	0	0	33 1	1 2	0	0	0	0	0	48	3 0	2	129	1	0	1	4	0	0	- 1	0	0	0	0	0	0 2
7 4:45 PM	35	2	0	0 3	0	0	0	54	4	1	0	2	0	0	0	36	1	0	1 9	8 1	0	0	13	3 0	0	0	0	0	0	0	9 0	0	0	48	0	0	0	51 () 1	0	0	0	0	0	51	4 0	- 1	117	3	0	2	16	0	0 0	- 1	0	0	0	0	1	0 2
8 5:00 PM	22	0	0	0 5	0	0	0	37	1	2	1	0	0	0	0	29	0	1	0 8	1 0	- 1	2	15	5 0	0	1	0	0	0	0	4 0	0	0	51	0	0	0	34 () 1	1	0	0	0	0	59	2 0	- 1	101	1	0	0	13	0	0 0	1	0	0	0	0	0	0 0
9 5:15 PM	21	0	0	0 3	1	0	0	66	2	0	3	0	0	0	0	38	0	0	0 8	5 0	0	2	10	0	0	0	1	0	0	0	14 0	0 0	0	54	1	0	0	47 () 1	2	0	0	0	0	56	0 0	2	113	3	0	1	8	0	0 0	0	0	0	0	0	0	1 2
10 5:30 PM	5	0	0	0 4	1	0	0	44	1	0	4	0	0	0	0	33	1	0	1 9	2 4	2	1	10	0	0	0	0	0	0	0	9 0	0 0	0	49	0	0	0	34 () 1	1	0	0	0	0	59	0 0	0	113	1	0	1	13	0	0 1	0	0	0	0	0	0	1 2
11 5:45 PM	14	0	0	0 5	0	0	0	40	1	0	1	1	0	0	0	30	0	0	1 11	16 1	0	2	6	0	0	0	0	0	0	0	7 0	0 0	0	43	- 1	0	0	43 (0 0	0	0	0	0	0	44	0 0	0	103	1	0	2	8	0	0 0	0	0	0	0	9	0	6 1
12 6:00 PM	14	0	0	1 4	0	0	0	41	0	0	0	0	0	0	0	33	0	0	0 8	9 2	0	0	8	- 1	0	- 1	0	0	0	0	9 0	0 0	0	39	3	0	0	33 1	1 0	0	0	0	0	0	36	0 0	0	70	0	0	0	18	0	0 0	0	0	0	0	0	0	1 1
3HR Total	219	7	0	834	6	9	2	573	20	9	01	7	0	-	0	8	9	9 '	1107	16	7	Ξ	146	2	0	2	2	0	0	0	4	0	0	58.1	17	7	-	492	, =	5	-	0	0	0	621	3 16	=	1344	13	0	6	139		-	9	0	0	0	o,	7	15
Peak Hour Total	106	9	0	163	0	2	-	205	9	2	0	4	0	0	0	124	2	α,	306	7	2	2	19	+	0	0	0	0	0	0	g 6	0	0	216	80	1	0	172	9	0	0	0	0	0	207	7	7	513	9	0	3	47	0	0	3	0	0	0	0	-	9

Traffic Data & Contro

Site ID: N/

Location: Harbour Dr & Earl St Weather: Fine

Suburb: Coffs Harbour

 AM Peak
 09:15
 (hour ending)

 PM Peak
 16:00
 (hour ending)

Traffic Control: Roundabout

						Harbo	ur Dr (S	outhbou	und)											Ea	rl St (We	estbound)										Harbour	Dr (Nor	thbound))									Ea	arl St (Ea	stbound	1)						Pede	estrians	
TIME		Movem (Left T				rement 2 nrough)	2		Movem (Right T				vement U Turn)			Mover (Left				rement 5 nrough)	•		ovemen ight Tur		'	lovemen (U Turr			Moven (Left 1			Mover (Thro	ment 8 ough)	Мо	vement 9 Tu) (I urn)	Right Mov		a ırn)	(U		nent 10 Turn)			ement 1 hrough)	1		ovemen light Tu		Mover	ment 12a Turn		(U A	В	С	D
15 MINUTE PERIOD ENDIN	Ears, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists Cars. Utilities &	Motorcycles Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists Cars, Utilities &	Motorcycles	Heavy Trucks	Dydists	Cars, Utities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists Cars, Utilities &	Motorcycles Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Indoos	Cyclists	Cars, Utities & Motorcycles	Light Trucks	Heavy Trucks Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists Cars, Utilities &	Light Trucks	Heavy Trucks	Cyclists Cars, Utilities &	Matarayates Light Trucks	Heavy Trucks	Cyclists Cars, Utilities &	Light Trucks	Heavy Trucks	Cyclists Cars, Utilities &	Motorcycles Light Trucks	Heavy Trucks	Cyclists Cars, Utilities &	Matarcycles Light Trucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	Light Trucks	Dydists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	North	East	South	West
1 7:15 AM 2 7:30 AM	3	0	0	0	38 1 43 1	0	2	8	1 0	0	0 2	0 (0 0	0	0	0	1 0	0	0 0	0	0	1 2	0 0	0	0	0	0 0	27 16	1 4	0	0 47	0 2	0 2	1 1	0	0	0 0	0	0	0 1	4 0 9 0	0	1 0	0	0	0	27 31	1 1	1 1	0	0	0 0	0	0	2 4	4 3
3 7:45 AM 4 8:00 AM		0	0	0	44 2	1	1	17	0	0	0	1 (0	0	2	0	0	0	0 1	0	1	2	0 0	0	0	0	0 0	39	2	0	0 60	0	1	0 2	1	0	0 1	0	0	0 2	5 1	0	3	0	0	1	24	0 1	0	0	0	0 0	0	2	1	0
5 8:15 AM	10	0	0	0	74 1	2	0	15	1	0	o	0 1	0	0	2	0	0	0	2 0	1	0	1	0 0	0	0	0	0 0	39	1	0	0 62	2	1	1 5	0	0	0 2	0	0	0 3	7 0	0	0	0	0	1	39	1	0	1	0	0 0	1	5	0	2
6 8:30 AM 7 8:45 AM		0	0	0	99 2 86 2	2	0	15	0	2	0	3 1	0	0	1 5	0	0	0	2 0	0	0	4 8	0 0	0	0	0	0 0	56 47	1 2	5	0 10	1 0	3	0 5	0	0	0 3	0	0	0 50	5 0	0	0 1	7 0	0	0	51 80	1 :	0	0	0	0 0	0	9 16	8	1 2
8 9:00 AM	14	0	0	0 1	26 2	3	0	23	1	0	0	2	0	0	7	0	0	0	4 1	0	0	6	0 0	0	0	0	0 0	58	1	2	1 11		2	2 1	1 0	0	0 4	0	0	0 6	1 1	0	1 2	3 1	0	0	73	1 (1	0	0	0 0	0	14	9	4
9 9:15 AM 10 9:30 AM		0	0	0	36 0 65 1	1	0	13	2	0	2	5 1	0 0	0	10	0	0	0	9 0	0	0	10	1 0	0	0	0	0 0	39 49	0	1	1 130	2 2	3	1 1	3 0	0	0 4	0	0	0 4	9 0	0	0 1	3 0	0	0	68 41	1 1	0	0	0	0 0	0	1 12	5 2	0
11 9:45 AM 12 10:00 AM		0	0	0	73 2 84 2	2	1	13	0	0	0 1	10 (0	0	5 7	1 0	0	0 1	3 0	0	0	16	0 0	1 0	0	0	0 0	45 53	2	0	1 11	2	0	0 7	0	0	0 1	0	0	0 4	0 0	0	0 1	1 0	0	0	62	0 1	0	2	0	0 0	0	13	3	0
3HR Total	136	-	0	N	1 20	18	^	182	10	т.	, i	40	0	0	46	-	-	0 0	20 00	-	2	73	4 0	-	0	0 1	0 0	517	18	6	1076	12	15	. 17		o	24	0	-	478		0	9 9	- 24	-	10	283	0 4	6	10	ő	0 0	-	06	45	6
Peak Hour Tota	al &	-	٥	20	347	10	-	F	-	ю	0 9	2 0	0	٥	8	۰	0	0 8	3 -	0	0	26 0	v 0	0	0	0 1	0 0	200	9	Ξ	2 460	60	φ	ω 8	0	0	0 5	0	-	0 213	-	0	- 8	-	0	ю	272	4 4	-	9	0	0 0	0	99	72	80

						Harbo	our Dr (Southb	oound))												Ear	rl St (W	/estbou	ınd)												Ha	rbour D	r (Norti	nbound)											Ear	rl St (Ea	stboun	ıd)							P	edestria	ns
TIME		Movemer (Left Tur				ement : rough)				ement 3 ht Turn)		-	Movem (U T				Move (Left	ment 4 Turn)			Mover (Thro				Mover (Right				Moven (U T	nent 6a urn)			Noveme (Left To				ovemer Throug		Mov	ement 9	9 urn)	(Right	Movem	nent 9a Tur		(U		vement _eft Turn			Moven (Thro				lovem Right	ent 12 Turn)	N	loveme	nt 12a Turn		(U	Α Ε	в	D
15 MINUTE PERIOD ENDING	Cars, Utilities & Motorcycles	.ight Trucks	leavy Trucks	Cars, Utilities &	ight Trucks	Heavy Trucks	Sydists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Sydists	Cars, Utilities & Motorcycles	ight Trucks	Heavy Trucks	Sydists	Cars, Utilities & Motorcycles	ightTrucks	Heavy Trucks	Cyclists	Cars, Utilities & Motorcycles	.ight Trucks	leavy Trucks	Cyclists	Cars, Utilities & Motorcycles	ight Trucks	Heavy Trucks	Sydists	Cars, Utilities & Motorcycles	ight Trucks	Heavy Trucks	Sydists	Cars, Utilities & Motorcycles	-ight Trucks	leavy Trucks	Sydists Sydists	Motorcycles	ignt inces	Cyclists	Cars, Utilities & Motorcycles	ight Trucks	Heavy Trucks	Sydists	Cars, Utilities & Motorcycles	Light Trucks	Heavy Trucks	Cyclists	Votorcycles	Light Trucks Heavy Trucks	Sydists	Cars, Utilities & Motorcycles	-ight Trucks	Heavy Trucks	Sydists	Cars, Utilities & Votorcycles	.ight Trucks	leavy Trucks	Sydists	Votorcycles	.ight Trucks	Heavy Trucks	sise in a	unov de	1	Nest
1 3:15 PM 2 3:30 PM	19	0	0	10	3 3	1	0	11	0	0	0	1	0	0	0	9	0	0	0	12	0	0	0	12	0	0	0	0	0	0	0	55	1	2		113	1	2 0	13	0	0	0	3	0	0	0	46	1 0	0	20	0	0	2	77	0	2	1	2	0	0	0	0	0	7 0
3 3:45 PM	16	0	0	13	1 0	1	0	23	0	0	0	16	0	0	0	13	0	0	0	17	0	0	0	11	0	0	0	0	0	0	0	64	0	8		129	1	9 0	10	0	0	0	1	0	0	0	36	0 0	1	22	0	0	1	74	0	2	2	3	0	0	0	0	0	0 0
4 4:00 PM	12	0	0	10	B 1	0	1	19	-1	0	0	7	1	0	0	7	0	0	0	14	0	0	0	17	0	0	0	0	0	0	0	52	0	3	0	95	1	0	6	0	0	0	6	0	1	0	63	0 0	0	21	0	0	0	88	0	0	0	2	0	0	0	0	0	3 1
5 4:15 PM	13	0	0	11	5 2	1	0	0	0	0	0	0	0	0	0	16	0	0	0	17	0	0	- 1	21	0	0	2	0	0	0	0	49	1	2	1	97	3) 2	12	0	0	2	4	0	0	0	41	0 0	0	7	0	0	0	69	0	0	0	1	0	0	0	0	4	7 0
6 4:30 PM 7 4:45 PM	25	0	0	110	0 2	2	0	0	0	0	0	0	0	0	0	10	0	0	0	13	0	0	0	15	0	0	1	0	0	0	0	44	1	0	0	84	0	3	10	0	0	0	3	0	0	0	40	0 0	0	13	0	0	0	58	1	0	0	0	0	0	0	0 :	2	9 0
8 5:00 PM	19	0	0	10	8 1	1	2	0	0	0	0	0	0	0	0	9	0	0	0	13	0	0	0	13	0	0	0	0	0	0	0	46	1	0	2	74	0	1	12	0	0	0	2	0	ő	0	35	0 0	0	15	0	0	0	91	0	0	0	3	0	0	0	0 1	11	6 0
9 5:15 PM	21	0	0	12	0 1	1	0	18	-1	0	0	3	0	0	0	14	0	0	1	10	0	0	1	21	0	0	0	0	0	0	0	47	0	1	1	88	0	0	11	0	0	0	8	0	0	0	34	0 0	- 1	19	0	0	0	99	0	0	1	5	0	0	0	0	1	4 0
10 5:30 PM	9	0	0	90	1	- 1	0	24	3	0	0	0	0	0	0	14	0	0	0	18	0	0	- 1	13	0	0	0	0	0	0	0	43	0	0	0	66	0	1	6	0	0	0	4	0	0	0	24	0 0	- 1	25	0	0	0	99	0	0	0	8	0	0	0	0 !	9	5 0
11 5:45 PM	10	0	0	10	4 0	0	0	15	0	0	0	0	0	0	0	6	0	0	0	7	0	0	0	29	0	0	0	0	0	0	0	37	0	1	0	88	1	0	11	0	0	0	4	0	0	0	23	0 0	0	15	0	0	0	82	0	0	1	0	0	0	0	0	7	6 0
12 6:00 PM	e e	0	0 .	. ge	0	2	0	10	9	0	0	2	- 0	0	0	8	0	0	- 0	20 40	0	0	0	16	0	0	0	0	0	0	0	49	0	-	0	74	0 0	0 0	9	0	0	0	11	0	- 0	0	18 m	- 0	0	7	0	0	10	OR DR	9	9	0	9	0	0 0	0 0	0 1	0 1	0 0
3HR Total	12:		1	133	1 -	1 =		4	-	-	_	4		-	_	13	-			16	_	-		-6	-	_					-	8		6		=		. -	12	-	-		vò.	_		1	83			8	-	-		8	-	-		6	-	- '				•
Peak Hour Total	57	0	0 (478	9	9	-	75	2	0	0	37	1	0	0	2	0	0	0	18	0	0	0	8	0	0	0	0	0	0	0	221	2	16	0	52	n (42	0	0	0	15	0	-	0	184	- 0	-	92	0	0	5	304	2	9	4	80	0	0 0	0 (> 0	• ;	-

APPENDIX B

SIDRA INTERSECTION OUTPUTS

Site: PM Site 1 Sawtell Road

MOVEMENT SUMMARY

Hogbin Drive/Sawtell Road Roundabout

Movem	ent Per	rformance - \	/ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
O 41 T		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: T											
1	L	160	3.8	0.224	8.5	LOSA	1.0	7.5	0.58	0.73	48.2
2	Т	601	3.7	0.575	7.3	LOSA	4.5	32.5	0.70	0.70	48.0
3	R	50	2.0	0.575	14.2	LOS B	4.5	32.5	0.70	0.94	45.5
Approac	ch	811	3.6	0.575	8.0	LOS A	4.5	32.5	0.68	0.72	47.9
East: Sa	awtell Ro	ad									
4	L	72	8.3	0.163	8.5	LOSA	0.7	5.1	0.56	0.73	48.6
5	Т	131	2.3	0.353	6.6	LOSA	1.9	13.5	0.58	0.60	48.1
6	R	312	1.9	0.353	13.2	LOS B	1.9	13.5	0.59	0.82	44.8
Approac	ch	515	2.9	0.353	10.9	LOS B	1.9	13.5	0.58	0.75	46.1
North: H	logbin D	rive									
7	L	152	0.7	0.251	6.9	LOSA	1.5	10.8	0.53	0.61	48.8
8	Т	329	6.7	0.251	5.9	LOSA	1.5	10.8	0.53	0.53	49.0
9	R	67	10.4	0.251	13.0	LOS B	1.4	10.7	0.54	0.83	46.1
Approac	ch	548	5.5	0.251	7.1	LOS A	1.5	10.8	0.53	0.59	48.6
West: S	awtell Ro	oad									
10	L	235	4.3	0.410	13.6	LOS B	2.9	21.3	0.89	0.97	43.7
11	Т	120	3.3	0.432	11.3	LOS B	3.5	25.3	0.92	0.92	44.7
12	R	188	5.9	0.432	18.2	LOS B	3.5	25.3	0.92	0.96	41.7
Approac		543	4.6	0.432	14.7	LOS B	3.5	25.3	0.91	0.96	43.2
All Vehic	cles	2417	4.1	0.575	9.9	LOSA	4.5	32.5	0.68	0.75	46.5

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 13 December 2012 1:29:32 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.12.2089 www.sidrasolutions.com

Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2012_SIDRA Intersections.sip 8000283, BITZIOS CONSULTING, FLOATING

MOVEMENT SUMMARY

Hogbin Drive/Sawtell Road Roundabout

Site: AM Site 1 Sawtell Road

SIDRA

INTERSECTION

Moven	nent Per	formance - V	/ehicles								
Mov ID		Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Toormina		,,	.,,						po. 10.1	
1	L	187	1.1	0.216	8.0	LOS A	1.1	7.8	0.56	0.68	48.3
2	Т	348	2.0	0.373	6.4	LOSA	2.4	16.7	0.61	0.58	48.6
3	R	78	1.3	0.373	13.3	LOS B	2.4	16.7	0.61	0.86	46.0
Approa	ch	613	1.6	0.373	7.8	LOSA	2.4	16.7	0.59	0.65	48.1
East: Sa	awtell Ro	ad									
4	L	138	5.8	0.200	9.3	LOS A	1.0	7.0	0.67	0.80	47.6
5	Т	120	1.7	0.311	7.2	LOS A	1.7	12.5	0.70	0.65	47.1
6	R	171	4.1	0.311	14.1	LOS B	1.7	12.5	0.70	0.90	44.9
Approa	ch	429	4.0	0.311	10.6	LOS B	1.7	12.5	0.69	0.80	46.3
North: F	Hogbin Dr	rive									
7	L	271	1.8	0.442	7.6	LOSA	3.0	21.2	0.64	0.67	48.2
8	T	497	3.4	0.442	6.6	LOSA	3.0	21.2	0.64	0.60	48.0
9	R	177	3.4	0.442	13.6	LOS B	2.8	20.4	0.65	0.85	45.4
Approa	ch	945	3.0	0.442	8.2	LOSA	3.0	21.2	0.64	0.67	47.5
West: S	Sawtell Ro	ad									
10	L	136	4.4	0.183	9.0	LOS A	0.9	6.9	0.63	0.73	47.9
11	Т	147	0.7	0.359	7.1	LOSA	2.3	16.6	0.68	0.65	47.3
12	R	226	2.2	0.359	14.0	LOS B	2.3	16.6	0.68	0.84	44.9
Approa	ch	509	2.4	0.359	10.6	LOS B	2.3	16.6	0.67	0.75	46.3
All Vehi	cles	2496	2.7	0.442	9.0	LOSA	3.0	21.2	0.64	0.70	47.2

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 13 December 2012 1:30:15 PM SIDRA INTERSECTION 5.1.12.2089

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2012_SIDRA Intersections.sip 8000283, BITZIOS CONSULTING, FLOATING

Site: AM Site 2 Stadium Drive/ **Doug Knight Drive**

Hogbin Drive/Doug Knight Drive Roundabout

Moven	nent Per	formance - \	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back (Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: I	Hobgin D	rive									
1	L	133	16.5	0.462	7.1	LOS A	3.1	22.4	0.48	0.60	49.3
2	T	931	2.1	0.462	5.6	LOSA	3.1	22.4	0.49	0.51	49.5
3	R	93	9.7	0.462	12.7	LOS B	3.0	21.5	0.50	0.83	46.4
Approac	ch	1157	4.4	0.462	6.3	LOSA	3.1	22.4	0.49	0.54	49.2
East: Do	oug Knig	ht Drive									
4	L	25	36.0	0.063	13.5	LOS B	0.3	2.8	0.73	0.79	44.5
5	Т	35	14.3	0.078	8.8	LOS A	0.5	3.7	0.76	0.70	47.0
6	R	22	4.5	0.078	15.5	LOS B	0.5	3.7	0.76	0.80	44.0
Approac	ch	82	18.3	0.078	12.0	LOS B	0.5	3.7	0.75	0.76	45.4
North: F	Hobgin D	rive									
7	L	204	4.4	0.243	7.5	LOS A	1.2	8.7	0.48	0.63	48.8
8	T	575	4.9	0.580	6.0	LOSA	4.4	32.3	0.60	0.54	48.6
9	R	181	5.5	0.580	12.9	LOS B	4.4	32.3	0.60	0.81	46.2
Approac	ch	960	4.9	0.580	7.6	LOSA	4.4	32.3	0.57	0.61	48.1
West: S	Stadium D	rive									
10	L	323	1.9	0.343	8.1	LOSA	1.7	12.4	0.69	0.71	47.5
11	Т	94	1.1	0.281	7.8	LOS A	1.3	9.2	0.68	0.70	47.4
12	R	100	9.0	0.281	14.8	LOS B	1.3	9.2	0.68	0.94	44.4
Approac	ch	517	3.1	0.343	9.4	LOSA	1.7	12.4	0.69	0.75	46.8
All Vehi	cles	2716	4.7	0.580	7.5	LOSA	4.4	32.3	0.56	0.61	48.2

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 13 December 2012 1:29:38 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.12.2089 www.sidrasolutions.com Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2012 SIDRA Intersections.sip 8000283, BITZIOS CONSULTING, FLOATING

MOVEMENT SUMMARY

Site: PM Site 2 Stadium Drive/ **Doug Knight Drive**

Hogbin Drive/Doug Knight Drive Roundabout

Mover	nent Per	formance - \	Vehicles								
Mov ID		Demand Flow veh/h		Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Hobgin D	rive									
1	L	95	5.3	0.334	7.5	LOS A	2.0	14.2	0.56	0.66	48.8
2	Т	602	2.2	0.334	6.4	LOS A	2.0	14.2	0.57	0.58	49.0
3	R	32	12.5	0.334	13.6	LOS B	1.9	13.6	0.57	0.89	45.9
Approa	ich	729	3.0	0.334	6.8	LOS A	2.0	14.2	0.57	0.60	48.8
East: D	oug Knigh	nt Drive									
4	L	55	7.3	0.139	15.5	LOS B	0.8	6.3	0.87	0.89	42.2
5	Т	52	3.8	0.277	12.6	LOS B	2.1	15.4	0.95	0.89	43.4
6	R	109	4.6	0.277	19.4	LOS B	2.1	15.4	0.95	0.92	40.8
Approa	ich	216	5.1	0.277	16.8	LOS B	2.1	15.4	0.93	0.90	41.7
North: I	Hobgin Dr	ive									
7	L	51	13.7	0.063	7.0	LOS A	0.3	2.0	0.34	0.52	49.7
8	Т	728	2.2	0.692	5.5	LOS A	6.6	47.1	0.56	0.50	48.8
9	R	279	4.7	0.692	12.4	LOS B	6.6	47.1	0.56	0.75	46.2
Approa	ich	1058	3.4	0.692	7.4	LOS A	6.6	47.1	0.55	0.57	48.1
West: S	Stadium D	rive									
10	L	218	5.5	0.210	7.5	LOSA	1.0	7.3	0.58	0.65	48.2
11	Т	25	12.0	0.170	7.0	LOS A	0.7	5.5	0.59	0.61	47.8
12	R	111	6.3	0.170	13.8	LOS B	0.7	5.5	0.59	0.85	44.8
Approa	ich	354	6.2	0.210	9.4	LOS A	1.0	7.3	0.58	0.71	47.0
All Vehi	icles	2357	3.9	0.692	8.4	LOSA	6.6	47.1	0.59	0.63	47.4

Level of Service (LOS) Method: Delay (HCM 2000). Roundabout LOS Method: Same as Signalised Intersections. Vehicle movement LOS values are based on average delay per movement Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 13 December 2012 1:30:18 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.12.2089 Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2012_SIDRA Intersections.sip

www.sidrasolutions.com

Site: AM Site 3 Howard Street/ Albany Street/City Hill Drive

Hogbin Drive/Howard Street Roundabout

		Demand		Deg.	Average	Level of	95% Back	of Oueue	Prop.	Effective	Average
Mov ID		Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h			sec					per veh	
South: H	logbin D	rive									
1	L	583	0.7	0.453	5.3	LOS A	3.0	20.9	0.31	0.47	50.7
2	Т	750	3.7	0.453	4.0	LOS A	3.0	21.0	0.32	0.37	51.9
3	R	8	12.5	0.453	12.0	LOS B	2.9	21.0	0.33	0.90	47.2
Approac	h	1341	2.5	0.453	4.6	LOSA	3.0	21.0	0.32	0.42	51.3
East: Ho	ward Sti	reet									
4	L	13	0.0	0.072	7.9	LOS A	0.3	2.4	0.63	0.70	48.
5	Т	13	7.7	0.072	6.8	LOS A	0.3	2.4	0.63	0.63	48.2
6	R	26	15.4	0.072	14.7	LOS B	0.3	2.4	0.63	0.86	44.8
Approac	h	52	9.6	0.072	11.0	LOS B	0.3	2.4	0.63	0.76	46.
North: H	obgin Dr	rive									
7	L	26	7.7	0.299	6.2	LOS A	1.8	13.3	0.50	0.55	50.
8	Т	615	6.0	0.299	4.8	LOSA	1.8	13.3	0.51	0.45	50.
9	R	72	4.2	0.299	12.7	LOS B	1.7	12.7	0.51	0.85	46.
Approac	h	713	5.9	0.299	5.7	LOSA	1.8	13.3	0.51	0.49	49.
Nest: Al	bany Str	eet									
10	L	63	1.6	0.086	8.0	LOS A	0.4	2.6	0.58	0.69	48.
11	Т	15	0.0	0.296	5.7	LOSA	1.6	11.5	0.63	0.56	47.6
12	R	313	3.8	0.296	13.6	LOS B	1.6	11.5	0.63	0.82	44.4
Approac	h	391	3.3	0.296	12.4	LOS B	1.6	11.5	0.62	0.79	45.
South W	est: City	Hill Drive									
30	L	4	25.0	0.009	9.4	LOS A	0.0	0.3	0.67	0.66	47.
32	R	1	0.0	0.009	17.1	LOS B	0.0	0.3	0.67	0.81	43.3
Approac	h	5	20.0	0.009	10.9	LOS B	0.0	0.3	0.67	0.69	46.
All Vehic	les	2502	3.8	0.453	6.3	LOS A	3.0	21.0	0.43	0.50	49.

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Processed: Thursday, 13 December 2012 1:29:44 PM

SIDRA Standard Delay Model used.

SIDRA

INTERSECTION

MOVEMENT SUMMARY

Site: PM Site 3 Howard Street/ Albany Street/City Hill Drive

Hogbin Drive/Howard Street Roundabout

	าent Per	formance - V	/ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delav	Level of Service	95% Back o Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h		v/c	sec	OCIVICE	venicies	Distance		per veh	speed km/l
South: F	Hogbin D		70	V/ O	300		VCII			per veri	KITI/T
1	L	360	1.4	0.361	5.2	LOSA	2.1	15.2	0.27	0.47	51.0
2	Т	702	4.0	0.361	3.9	LOSA	2.1	15.2	0.29	0.36	52.
3	R	4	0.0	0.361	11.7	LOS B	2.1	15.1	0.29	0.91	47.
Approac	ch	1066	3.1	0.361	4.4	LOSA	2.1	15.2	0.28	0.40	51.
East: Ho	oward Sti	reet									
4	L	17	5.9	0.073	8.2	LOSA	0.3	2.4	0.67	0.73	47.
5	Т	13	0.0	0.073	6.9	LOSA	0.3	2.4	0.67	0.66	47.
6	R	23	0.0	0.073	14.7	LOS B	0.3	2.4	0.67	0.87	44.
Approac	ch	53	1.9	0.073	10.7	LOS B	0.3	2.4	0.67	0.77	46.
North: H	lobgin Dr	rive									
7	L	22	0.0	0.344	6.2	LOSA	2.2	15.6	0.54	0.56	49.
8	Т	717	4.0	0.344	5.0	LOSA	2.2	15.6	0.54	0.47	49.
9	R	73	2.7	0.344	12.9	LOS B	2.1	14.9	0.55	0.87	46.
Approac	ch	812	3.8	0.344	5.7	LOSA	2.2	15.6	0.54	0.51	49.
West: A	lbany Str	eet									
10	L	92	1.1	0.120	7.7	LOSA	0.5	3.5	0.56	0.69	48.
11	T	20	0.0	0.309	5.4	LOSA	1.6	11.2	0.59	0.53	48.
12	R	337	3.0	0.309	13.3	LOS B	1.6	11.2	0.59	0.82	44.
Approac	ch	449	2.4	0.309	11.8	LOS B	1.6	11.2	0.59	0.78	45.
South W	Vest: City	Hill Drive									
30	L	28	7.1	0.046	7.3	LOSA	0.2	1.4	0.61	0.66	48.
32	R	8	0.0	0.046	15.5	LOS B	0.2	1.4	0.61	0.90	44.
Approac	ch	36	5.6	0.046	9.1	LOSA	0.2	1.4	0.61	0.71	47
All Vehic	cles	2416	3.2	0.361	6.4	LOSA	2.2	15.6	0.44	0.52	49

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

SIDRA INTERSECTION

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

Site: PM Site 4 Harbour Drive

MOVEMENT SUMMARY

Site: AM Site 4 Harbour Drive

Hogbin Drive/Harbour Drive Roundabout

Movem	ent Perf	ormance - \	Vehicles								
Mov ID		Demand Flow		Deg. Satn	Average Delay	Level of Service	95% Back o Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h		v/c	sec		veh			per veh	· km/r
South: F	Hogbin Dri	ive									
1	L	149	11.4	0.242	9.4	LOSA	1.1	8.2	0.66	0.81	47.7
2	Т	259	5.4	0.442	7.2	LOS A	2.6	19.2	0.71	0.67	47.4
3	R	170	2.9	0.442	14.0	LOS B	2.6	19.2	0.71	0.97	45.2
Approac	ch	578	6.2	0.442	9.8	LOSA	2.6	19.2	0.70	0.80	46.7
East: Ha	arbour Dri	ve									
4	L	21	0.0	0.404	7.6	LOSA	2.2	16.0	0.65	0.67	48.5
5	Т	446	2.7	0.404	6.5	LOS A	2.2	16.0	0.66	0.59	48.3
6	R	305	3.0	0.404	14.0	LOS B	2.2	15.5	0.67	0.90	44.3
Approac	ch	772	2.7	0.404	9.5	LOS A	2.2	16.0	0.66	0.72	46.0
North: H	logbin Dri	ve									
7	L	135	2.2	0.405	7.7	LOSA	2.3	16.9	0.65	0.67	48.3
8	Т	551	4.0	0.405	6.7	LOS A	2.3	16.9	0.65	0.61	48.
9	R	108	7.4	0.405	14.0	LOS B	2.3	16.4	0.66	0.94	45.3
Approac	ch	794	4.2	0.405	7.9	LOS A	2.3	16.9	0.65	0.67	47.7
West: Ha	arbour Dr	ive									
10	L	154	13.0	0.372	9.7	LOS A	2.5	18.7	0.77	0.82	47.
11	Т	409	4.2	0.372	8.6	LOSA	2.5	18.7	0.77	0.78	47.4
12	R	43	20.9	0.372	16.1	LOS B	2.3	17.2	0.76	0.97	44.1
Approac	ch	606	7.6	0.372	9.4	LOS A	2.5	18.7	0.77	0.80	47.2
All Vehic	cles	2750	4.9	0.442	9.1	LOSA	2.6	19.2	0.69	0.74	47.

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

SIDRA INTERSECTION

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

MOVEMENT SUMMARY

Hogbin Drive/Harbour Drive Roundabout

Moven	nent Per	formance - \	/ehicles								
	_	Demand	107	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 11 1		veh/h	%	v/c	sec		veh	m		per veh	km/h
	Hogbin D										
1	L	189	7.9	0.275	9.1	LOSA	1.3	9.5	0.66	0.78	47.7
2	Т	329	5.5	0.461	7.4	LOSA	2.9	20.9	0.72	0.69	47.6
3	R	124	4.8	0.461	14.2	LOS B	2.9	20.9	0.72	0.98	45.2
Approa	ch	642	6.1	0.461	9.2	LOSA	2.9	20.9	0.70	0.77	47.1
East: H	arbour Dr	rive									
4	L	29	0.0	0.374	7.6	LOSA	2.0	14.1	0.66	0.67	48.5
5	Т	403	3.0	0.374	6.5	LOSA	2.0	14.1	0.66	0.59	48.3
6	R	259	2.7	0.374	14.0	LOS B	1.9	13.6	0.67	0.91	44.4
Approa	ch	691	2.7	0.374	9.3	LOSA	2.0	14.1	0.66	0.71	46.7
North: F	Hogbin Dr	rive									
7	L	99	5.1	0.415	7.6	LOSA	2.4	17.6	0.64	0.66	48.5
8	Т	568	4.8	0.415	6.5	LOSA	2.4	17.6	0.64	0.59	48.2
9	R	170	2.9	0.415	13.7	LOS B	2.3	16.9	0.65	0.90	45.3
Approa	ch	837	4.4	0.415	8.1	LOSA	2.4	17.6	0.64	0.66	47.6
West: F	larbour D	rive									
10	L	180	7.8	0.376	9.4	LOSA	2.6	18.9	0.76	0.80	47.5
11	Т	415	5.1	0.376	8.4	LOSA	2.6	18.9	0.76	0.76	47.4
12	R	38	10.5	0.376	15.6	LOS B	2.4	17.5	0.76	0.95	44.4
Approa	ch	633	6.2	0.376	9.1	LOSA	2.6	18.9	0.76	0.78	47.2
All Vehi	cles	2803	4.8	0.461	8.9	LOSA	2.9	20.9	0.69	0.73	47.2

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 13 December 2012 1:30:23 PM SIDRA INTERSECTION 5.1.12.2089

8000283, BITZIOS CONSULTING, FLOATING

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2012 SIDRA Intersections.sip

Processed: Thursday, 13 December 2012 1:29:47 PM SIDRA INTERSECTION 5.1.12.2089 www.sidrasolutions.com
Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2012_SIDRA Intersections.sip

Site: PM Site 5 Orlando Street

MOVEMENT SUMMARY

Site: AM Site 5 Orlando Street

Hogbin Drive/Orlando Street Roundabout

Movem	ent Per	formance - \	Vehicles								
		Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID		Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 " 5		veh/h	%	v/c	sec		veh	m		per veh	km/h
		nd Street									
21	L	51	13.7	0.119	13.3	LOS B	0.6	4.3	0.68	0.83	44.3
22	Т	168	6.5	0.366	9.7	LOSA	2.4	17.6	0.76	0.81	46.3
23	R	129	3.1	0.366	14.7	LOS B	2.4	17.6	0.76	0.89	43.9
Approac	h	348	6.3	0.366	12.1	LOS B	2.4	17.6	0.75	0.84	45.0
North Ea	ast: Hogb	in Drive									
24	L	179	6.1	0.856	22.4	LOS C	13.2	94.8	1.00	1.30	37.4
25	Т	375	1.3	0.856	21.5	LOS C	13.2	94.8	1.00	1.30	37.5
26	R	48	10.4	0.856	26.8	LOS C	13.2	94.8	1.00	1.29	36.0
Approac	h	602	3.5	0.856	22.2	LOS C	13.2	94.8	1.00	1.30	37.4
North W	est: Orla	ndo Street									
27	L	37	10.8	0.078	12.4	LOS B	0.3	2.6	0.63	0.78	44.9
28	Т	293	5.8	0.613	12.1	LOS B	5.7	41.8	0.84	0.96	44.5
29	R	243	3.7	0.613	17.2	LOS B	5.7	41.8	0.84	1.01	41.9
Approac	h	573	5.2	0.613	14.3	LOS B	5.7	41.8	0.83	0.97	43.4
South W	/est: Hog	bin Drive									
30	L	189	4.2	0.241	9.4	LOSA	1.2	8.9	0.53	0.71	47.4
31	Т	446	2.7	0.462	7.8	LOSA	3.1	22.3	0.61	0.67	47.6
32	R	56	7.1	0.462	13.0	LOS B	3.1	22.3	0.61	0.84	45.6
Approac	h	691	3.5	0.462	8.7	LOS A	3.1	22.3	0.59	0.70	47.4
All Vehic	cles	2214	4.4	0.856	14.4	LOS B	13.2	94.8	0.79	0.95	42.9

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

SIDRA INTERSECTION

MOVEMENT SUMMARY

Hogbin Drive/Orlando Street Roundabout

Movem	nent Per	formance - V	ehicles								
	_	Demand	107	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID	Turn	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0	t- O-l-	veh/h	%	v/c	sec		veh	m		per veh	km/h
		nd Street									
21	L	46	6.5	0.096	12.4	LOS B	0.4	3.3	0.66	0.80	44.9
22	Т	225	4.0	0.486	10.7	LOS B	3.7	27.0	0.81	0.88	45.9
23	R	180	4.4	0.486	15.8	LOS B	3.7	27.0	0.81	0.95	43.0
Approac	ch	451	4.4	0.486	12.9	LOS B	3.7	27.0	0.79	0.90	44.6
North E	ast: Hogb	oin Drive									
24	L	128	3.1	0.686	12.4	LOS B	7.0	49.9	0.83	0.94	45.1
25	Т	405	2.2	0.686	11.6	LOS B	7.0	49.9	0.83	0.92	45.3
26	R	52	1.9	0.686	16.7	LOS B	7.0	49.9	0.83	0.99	42.5
Approac	ch	585	2.4	0.686	12.2	LOS B	7.0	49.9	0.83	0.93	45.0
North W	/est: Orla	ndo Street									
27	L	112	5.4	0.228	13.0	LOS B	1.2	8.7	0.74	0.88	44.2
28	Т	165	1.2	0.490	11.5	LOS B	3.9	27.7	0.85	0.92	44.9
29	R	213	3.8	0.490	16.6	LOS B	3.9	27.7	0.85	0.97	42.2
Approac	ch	490	3.3	0.490	14.1	LOS B	3.9	27.7	0.82	0.93	43.5
South V	Vest: Hog	bin Drive									
30	L	214	3.3	0.301	10.2	LOS B	1.6	11.8	0.63	0.78	46.9
31	Т	518	1.0	0.572	9.4	LOSA	4.8	34.1	0.75	0.81	46.8
32	R	47	0.0	0.572	14.5	LOS B	4.8	34.1	0.75	0.91	44.4
Approac	ch	779	1.5	0.572	10.0	LOSA	4.8	34.1	0.72	0.81	46.7
All Vehic	cles	2305	2.7	0.686	12.0	LOS B	7.0	49.9	0.78	0.88	45.1

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

8000283, BITZIOS CONSULTING, FLOATING

SIDRA Standard Delay Model used.

Processed: Thursday, 13 December 2012 1:30:28 PM SIDRA INTERSECTION 5.1.12.2089 Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2012 SIDRA Intersections.sip

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Site: AM Site 6 Earl Street/Harbour **Drive**

Earl Street/Harbour Drive Roundabout

Movem	nent Per	formance - V	ehicles								
Mov ID		Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
	ast: Harb										
21	L	217	7.8	0.207	6.4	LOSA	0.9	6.9	0.29	0.51	50.1
22	Т	469	1.9	0.342	4.8	LOS A	1.9	13.8	0.29	0.43	51.2
23	R	40	0.0	0.342	11.7	LOS B	1.9	13.8	0.29	0.85	46.7
Approac	ch	726	3.6	0.342	5.7	LOS A	1.9	13.8	0.29	0.48	50.5
North E	ast: Earl	Street									
24	L	23	0.0	0.091	8.3	LOSA	0.4	3.2	0.60	0.68	48.1
25	Т	24	4.2	0.091	7.4	LOSA	0.4	3.2	0.60	0.64	48.1
26	R	26	7.7	0.091	14.3	LOS B	0.4	3.2	0.60	0.83	44.7
Approac	ch	73	4.1	0.091	10.2	LOS B	0.4	3.2	0.60	0.72	46.8
North W	/est: Harb	our Drive									
27	L	62	1.6	0.128	7.8	LOSA	0.6	4.3	0.52	0.65	48.8
28	Т	363	4.4	0.343	6.0	LOS A	2.2	15.9	0.56	0.54	48.9
29	R	75	5.3	0.343	12.8	LOS B	2.2	15.9	0.57	0.84	46.3
Approac	ch	500	4.2	0.343	7.3	LOS A	2.2	15.9	0.56	0.60	48.4
South W	Vest: Earl	Street									
30	L	214	0.5	0.609	10.6	LOS B	5.3	37.5	0.77	0.88	46.0
31	Т	61	1.6	0.609	9.6	LOS A	5.3	37.5	0.77	0.86	46.3
32	R	280	2.9	0.609	16.5	LOS B	5.3	37.5	0.77	0.96	42.8
Approac	ch	555	1.8	0.609	13.5	LOS B	5.3	37.5	0.77	0.92	44.3
All Vehic	cles	1854	3.2	0.609	8.6	LOSA	5.3	37.5	0.52	0.65	47.8

Level of Service (LOS) Method: Delay (HCM 2000). Roundabout LOS Method: Same as Signalised Intersections. Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

8000283, BITZIOS CONSULTING, FLOATING

Processed: Thursday, 13 December 2012 1:29:52 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.12.2089 www.sidrasolutions.com Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2012_SIDRA Intersections.sip

MOVEMENT SUMMARY

Site: PM Site 6 Earl Street/Harbour

Earl Street/Harbour Drive Roundabout

Movem	ent Per	formance - \	/ehicles								
Movell	rent r ei	Demand	remidies	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
Mov ID		Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h		v/c	sec		veh			per veh	km/h
South E	ast: Harb	our Drive									
21	L	239	7.5	0.226	6.7	LOS A	1.1	8.2	0.36	0.54	49.6
22	Т	474	3.4	0.366	5.1	LOSA	2.2	15.6	0.38	0.46	50.5
23	R	42	0.0	0.366	11.9	LOS B	2.2	15.6	0.38	0.84	46.7
Approac	ch	755	4.5	0.366	6.0	LOSA	2.2	15.6	0.37	0.51	50.0
North Ea	ast: Earl	Street									
24	L	44	0.0	0.212	9.4	LOSA	1.1	7.9	0.71	0.80	47.4
25	Т	55	0.0	0.212	8.5	LOSA	1.1	7.9	0.71	0.77	47.3
26	R	53	0.0	0.212	15.3	LOS B	1.1	7.9	0.71	0.91	43.9
Approac	ch	152	0.0	0.212	11.1	LOS B	1.1	7.9	0.71	0.83	46.0
North W	est: Harb	our Drive									
27	L	57	0.0	0.166	8.2	LOSA	0.8	5.8	0.57	0.69	48.6
28	Т	490	2.4	0.446	6.4	LOSA	3.2	22.6	0.65	0.58	48.3
29	R	77	2.6	0.446	13.2	LOS B	3.2	22.6	0.66	0.85	46.1
Approac	h	624	2.2	0.446	7.4	LOSA	3.2	22.6	0.64	0.63	48.0
South W	/est: Earl	Street									
30	L	185	0.5	0.651	11.7	LOS B	6.2	44.2	0.82	0.95	44.9
31	Т	76	0.0	0.651	10.7	LOS B	6.2	44.2	0.82	0.93	45.2
32	R	312	2.6	0.651	17.6	LOS B	6.2	44.2	0.82	1.01	42.0
Approac	h	573	1.6	0.651	14.8	LOS B	6.2	44.2	0.82	0.98	43.2
All Vehic	cles	2104	2.7	0.651	9.2	LOSA	6.2	44.2	0.60	0.69	47.1

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 13 December 2012 1:30:30 PM SIDRA INTERSECTION 5.1.12.2089

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2012_SIDRA Intersections.sip

Site: PM Site 1 Sawtell Road

MOVEMENT SUMMARY

Hogbin Drive/Sawtell Road Roundabout

Movem	ent Per	formance - \	/ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay	Level of Service	95% Back Vehicles veh	Distance	Prop. Queued	Effective Stop Rate	Average Speed
South: 1	oormina		76	V/C	sec	_	ven	m	_	per veh	km/h
1	L	222	3.6	0.357	10.0	LOSA	1.9	13.6	0.71	0.86	47.2
2	Т	837	3.7	0.920	21.0	LOS C	19.2	138.8	1.00	1.46	38.1
3	R	69	1.4	0.920	27.8	LOS C	19.2	138.8	1.00	1.46	36.4
Approac	ch	1128	3.5	0.920	19.2	LOS B	19.2	138.8	0.94	1.34	39.5
East: Sa	awtell Ro	ad									
4	L	100	8.0	0.247	9.3	LOSA	1.1	8.3	0.64	0.80	48.1
5	Т	182	2.2	0.535	7.9	LOSA	3.8	27.0	0.70	0.74	47.1
6	R	434	1.8	0.535	14.7	LOS B	3.8	27.0	0.73	0.95	44.0
Approac	ch	716	2.8	0.535	12.2	LOS B	3.8	27.0	0.71	0.88	45.3
North: F	logbin D	rive									
7	L	211	0.5	0.354	7.1	LOSA	2.3	16.7	0.58	0.63	48.5
8	Т	458	6.8	0.354	6.2	LOSA	2.3	16.7	0.59	0.55	48.6
9	R	93	10.8	0.354	13.3	LOS B	2.2	16.4	0.59	0.84	46.0
Approac	ch	762	5.5	0.354	7.3	LOS A	2.3	16.7	0.59	0.61	48.2
West: S	awtell Ro	oad									
10	L	248	4.3	0.937	108.2	LOS F	17.0	123.5	1.00	1.75	15.1
11	Т	167	3.6	1.417	437.8	LOS F	113.8	829.3	1.00	4.45	4.6
12	R	261	5.7	1.417	444.7	LOS F	113.8	829.3	1.00	4.44	4.9
Approac	ch	755	4.6	1.417	331.5	LOS F	113.8	829.3	1.00	3.45	6.3
All Vehic	cles	3361	4.1	1.417	85.2	LOS F	113.8	829.3	0.83	1.47	19.6

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 13 December 2012 1:34:14 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.12.2089 www.sidrasolutions.com Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2022_SIDRA Intersections.sip 8000283, BITZIOS CONSULTING, FLOATING

SIDRA INTERSECTION

Site: AM Site 1 Sawtell Road

MOVEMENT SUMMARY

Hogbin Drive/Sawtell Road Roundabout

Movem	nent Per	formance - V	/ehicles								
Marrido		Demand	1.07	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID	Turn	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Cautha	Toormina	veh/h	%	v/c	sec		veh	m		per veh	km/h
		240	1.3	0.315	0.4	LOSA	4.0	13.0	0.69	0.78	47.5
1	L				9.1		1.8				47.5
2	T	447	2.0	0.541	8.4	LOSA	4.6	32.7	0.79	0.80	47.2
3	R	100	1.0	0.541	15.2	LOS B	4.6	32.7	0.79	0.94	44.6
Approac	ch	787	1.7	0.541	9.5	LOSA	4.6	32.7	0.76	0.81	46.9
East: Sa	awtell Ro	ad									
4	L	177	5.6	0.328	10.9	LOS B	1.8	13.1	0.81	0.91	46.3
5	Т	154	1.9	0.501	9.9	LOSA	3.7	26.7	0.88	0.95	45.7
6	R	220	4.1	0.501	16.8	LOS B	3.7	26.7	0.88	1.03	42.8
Approac	ch	551	4.0	0.501	13.0	LOS B	3.7	26.7	0.85	0.97	44.6
North: F	logbin Di	rive									
7	L	347	1.7	0.657	10.9	LOS B	7.1	50.5	0.88	0.94	46.7
8	Т	638	3.4	0.657	10.2	LOS B	7.1	50.5	0.88	0.94	46.0
9	R	228	3.5	0.657	17.5	LOS B	6.7	48.0	0.88	1.02	42.5
Approac	ch	1213	3.0	0.657	11.8	LOS B	7.1	50.5	0.88	0.96	45.5
West: S	awtell Ro	oad									
10	L	175	4.6	0.285	10.6	LOS B	1.7	12.3	0.77	0.85	46.5
11	Т	188	0.5	0.554	10.4	LOS B	5.2	36.5	0.89	0.94	45.5
12	R	290	2.1	0.554	17.3	LOS B	5.2	36.5	0.89	0.99	42.3
Approac	ch	653	2.3	0.554	13.5	LOS B	5.2	36.5	0.86	0.94	44.2
All Vehic	cles	3204	2.7	0.657	11.8	LOS B	7.1	50.5	0.84	0.92	45.4

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 13 December 2012 1:35:53 PM SIDRA INTERSECTION 5.1.12.2089

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2022_SIDRA Intersections.sip 8000283, BITZIOS CONSULTING, FLOATING

Site: AM Site 2 Stadium Drive/ **Doug Knight Drive**

Hogbin Drive/Doug Knight Drive Roundabout

Movem	nent Per	formance - \	Vehicles								
Mov ID		Demand Flow veh/h		Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: H	Hobgin D		/0	V/C	366		Veri	- '''		per veri	KIII/II
1	Ĺ	185	16.8	0.707	9.2	LOS A	7.9	57.9	0.78	0.80	47.7
2	Т	1296	2.2	0.707	8.0	LOSA	7.9	57.9	0.78	0.76	47.4
3	R	130	10.0	0.707	15.3	LOS B	7.8	56.2	0.79	0.91	44.7
Approac	ch	1611	4.5	0.707	8.7	LOSA	7.9	57.9	0.78	0.78	47.1
East: Do	oug Knig	ht Drive									
4	L	35	37.1	0.180	21.5	LOS C	1.0	9.5	0.92	0.96	38.2
5	Т	49	14.3	0.213	14.8	LOS B	1.7	12.8	1.00	0.93	42.2
6	R	30	3.3	0.213	21.5	LOS C	1.7	12.8	1.00	0.91	39.8
Approac	ch	114	18.4	0.213	18.7	LOS B	1.7	12.8	0.98	0.93	40.3
North: F	lobgin Di	rive									
7	L	284	4.6	0.373	8.6	LOSA	2.1	15.2	0.62	0.73	47.9
8	Т	800	4.9	0.886	13.9	LOS B	17.8	130.3	1.00	1.09	43.1
9	R	252	5.6	0.886	20.8	LOS C	17.8	130.3	1.00	1.09	40.6
Approac	ch	1336	4.9	0.886	14.1	LOS B	17.8	130.3	0.92	1.01	43.5
West: S	tadium D	rive									
10	L	449	1.8	0.661	12.5	LOS B	5.1	36.3	0.92	1.07	44.7
11	Т	130	8.0	0.571	12.3	LOS B	3.5	25.4	0.87	0.99	44.0
12	R	140	9.3	0.571	19.3	LOS B	3.5	25.4	0.87	1.05	41.1
Approac	ch	719	3.1	0.661	13.8	LOS B	5.1	36.3	0.90	1.05	43.8
All Vehi	cles	3780	4.8	0.886	11.9	LOS B	17.8	130.3	0.86	0.92	44.9

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 13 December 2012 1:36:37 PM SIDRA INTERSECTION 5.1.12.2089 Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2022 SIDRA Intersections.sip 8000283, BITZIOS CONSULTING, FLOATING

MOVEMENT SUMMARY

Site: PM Site 2 Stadium Drive/ **Doug Knight Drive**

Hogbin Drive/Doug Knight Drive Roundabout

		Demand		Deg.	Average	Level of	95% Back	of Ougue —	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h		v/c	sec	OCIVICE	veh	m	Queucu	per veh	km/l
South: F	Hobgin Dri	ve									
1	L	122	4.9	0.494	8.8	LOSA	3.8	27.6	0.76	0.78	47.
2	T	773	2.2	0.494	7.9	LOS A	3.8	27.6	0.76	0.74	47.
3	R	41	12.2	0.494	15.3	LOS B	3.7	26.5	0.76	0.96	44.
Approac	ch	936	3.0	0.494	8.3	LOS A	3.8	27.6	0.76	0.76	47.
East: Do	oug Knight	t Drive									
4	L	70	7.1	0.426	38.8	LOS D	3.3	24.2	1.00	1.06	29.
5	Т	67	4.5	0.873	111.1	LOS F	14.7	106.5	1.00	1.57	14.
6	R	140	4.3	0.873	118.0	LOS F	14.7	106.5	1.00	1.57	15.
Approac	ch	277	5.1	0.873	96.3	LOS F	14.7	106.5	1.00	1.44	17.
North: H	lobgin Dri	ve									
7	L	65	13.8	0.084	7.3	LOS A	0.4	2.8	0.39	0.56	49.
8	Т	935	2.2	0.923	11.0	LOS B	22.7	163.2	1.00	0.84	45.
9	R	358	4.7	0.923	18.0	LOS B	22.7	163.2	1.00	0.85	42.
Approac	ch	1358	3.5	0.923	12.7	LOS B	22.7	163.2	0.97	0.83	44.
West: St	tadium Dr	ive									
10	L	279	5.4	0.311	8.1	LOSA	1.7	12.3	0.71	0.70	47.
11	Т	32	12.5	0.260	7.8	LOSA	1.2	9.3	0.70	0.69	46.
12	R	143	6.3	0.260	14.6	LOS B	1.2	9.3	0.70	0.92	44.
Approac	ch	454	6.2	0.311	10.1	LOS B	1.7	12.3	0.70	0.77	46
All Vehic	cles	3025	3.9	0.923	18.6	LOS B	22.7	163.2	0.87	0.85	39

Level of Service (LOS) Method: Delay (HCM 2000). Roundabout LOS Method: Same as Signalised Intersections. Vehicle movement LOS values are based on average delay per movement Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 13 December 2012 1:37:22 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.12.2089

www.sidrasolutions.com Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2022_SIDRA Intersections.sip

Site: AM Site 3 Howard Street/ Albany Street/City Hill Drive

Hogbin Drive/Howard Street Roundabout

M ID		Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID		Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: L	logbin D	veh/h	%	v/c	sec		veh	m		per veh	km/l
1	L	812	0.7	0.654	5.7	LOSA	5.8	41.2	0.49	0.52	49.
2	T	1044	3.7	0.654	4.5	LOSA	5.8	41.4	0.49	0.52	50.
3	R	1044	9.1	0.654	12.5	LOS A	5.7	41.4	0.52	0.43	47.
		1867	2.5	0.654	5.1	LOSA	5.8	41.4	0.53	0.64	47.
Approac	m	1007	2.5	0.004	5.1	LUS A	5.6	41.4	0.51	0.47	49.
East: Ho	oward St	reet									
4	L	18	0.0	0.135	10.1	LOS B	0.7	5.1	0.77	0.84	46.
5	Т	18	5.6	0.135	8.9	LOS A	0.7	5.1	0.77	0.82	46.
6	R	37	16.2	0.135	16.9	LOS B	0.7	5.1	0.77	0.95	43.
Approac	ch	73	9.6	0.135	13.3	LOS B	0.7	5.1	0.77	0.89	44.
North: H	lobgin D	rive									
7	L	36	8.3	0.466	6.9	LOS A	3.4	24.8	0.69	0.60	48.
8	Т	855	6.0	0.466	5.6	LOSA	3.4	24.8	0.69	0.53	48.
9	R	100	4.0	0.466	13.7	LOS B	3.2	23.4	0.69	0.90	46.
Approac	ch	991	5.9	0.466	6.5	LOSA	3.4	24.8	0.69	0.57	48.
West: Al	bany Str	eet									
10	L	87	1.1	0.148	9.4	LOS A	0.7	5.1	0.72	0.82	47.
11	Т	21	0.0	0.511	8.6	LOSA	3.9	28.4	0.83	0.88	45.
12	R	436	3.9	0.511	16.6	LOS B	3.9	28.4	0.85	1.02	42.
Approac	h	544	3.3	0.511	15.1	LOS B	3.9	28.4	0.83	0.98	43.
South W	/est: City	Hill Drive									
30	L	5	20.0	0.016	12.9	LOS B	0.1	0.6	0.81	0.77	44.
32	R	1	0.0	0.016	20.5	LOS C	0.1	0.6	0.81	0.84	40.
Approac	h	6	16.7	0.016	14.2	LOS B	0.1	0.6	0.81	0.78	43.
All Vehic	des	3481	3.7	0.654	7.3	LOS A	5.8	41.4	0.62	0.59	48

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA INTERSECTION 5.1.12.2089 www.sidrasolutions.com
Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2022_SIDRA Intersections.sip

Roundabout Capacity Model: SIDRA Standard.

Processed: Thursday, 13 December 2012 1:38:36 PM

SIDRA Standard Delay Model used.

SIDRA

INTERSECTION

MOVEMENT SUMMARY

Site: PM Site 3 Howard Street/ Albany Street/City Hill Drive

Hogbin Drive/Howard Street Roundabout

		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID		Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h		v/c	sec		veh			per veh	km/l
South: F	łogbin D	rive									
1	L	461	1.1	0.472	5.4	LOS A	3.3	23.2	0.36	0.49	50.4
2	Т	893	3.1	0.472	4.1	LOS A	3.3	23.2	0.38	0.39	51.
3	R	5	0.0	0.472	11.9	LOS B	3.2	23.0	0.39	0.89	47.
Approac	:h	1359	2.4	0.472	4.6	LOSA	3.3	23.2	0.37	0.42	51.
East: Ho	ward Sti	reet									
4	L	22	4.5	0.122	10.0	LOS B	0.6	4.5	0.79	0.85	46.
5	Т	17	0.0	0.122	8.7	LOS A	0.6	4.5	0.79	0.82	46.
6	R	30	0.0	0.122	16.5	LOS B	0.6	4.5	0.79	0.94	43.
Approac	:h	69	1.4	0.122	12.5	LOS B	0.6	4.5	0.79	0.88	45.
North: H	lobgin Dr	rive									
7	L	28	0.0	0.480	6.9	LOS A	3.6	25.7	0.70	0.61	48.
8	T	912	3.2	0.480	5.8	LOS A	3.6	25.7	0.70	0.55	48.
9	R	93	2.2	0.480	13.9	LOS B	3.4	24.6	0.71	0.90	46.
Approac	:h	1033	3.0	0.480	6.5	LOSA	3.6	25.7	0.70	0.59	48.
West: Al	bany Str	eet									
10	L	118	8.0	0.168	8.4	LOS A	0.7	5.3	0.64	0.76	48.
11	Т	26	0.0	0.438	6.6	LOS A	2.7	19.3	0.72	0.67	46.
12	R	430	2.3	0.438	14.5	LOS B	2.7	19.3	0.72	0.92	44.
Approac	:h	574	1.9	0.438	12.9	LOS B	2.7	19.3	0.71	0.87	44
South W	est: City	Hill Drive									
30	L	36	5.6	0.070	8.4	LOS A	0.3	2.3	0.70	0.76	48
32	R	10	0.0	0.070	16.6	LOS B	0.3	2.3	0.70	0.94	43.
Approac	:h	46	4.3	0.070	10.2	LOS B	0.3	2.3	0.70	0.80	46
All Vehic	cles	3081	2.5	0.480	7.0	LOSA	3.6	25.7	0.56	0.58	48

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

SIDRA INTERSECTION

Site: PM Site 4 Harbour Drive

MOVEMENT SUMMARY

Site: AM Site 4 Harbour Drive

Hogbin Drive/Harbour Drive Roundabout

Movem	ent Per	formance - \	Vehicles								
		Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID	Turn	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Caudhal	Hogbin Di	veh/h	%	v/c	sec		veh	m		per veh	km/h
	•		44.5	0.440	40.0	1.00.0	0.4	40.0	0.00	0.05	45.0
1	L	208	11.5	0.442	12.2	LOS B	2.4	18.6	0.82	0.95	45.2
2	T	360	5.3	0.802	14.3	LOS B	8.3	60.1	0.97	1.19	42.5
3	R	237	3.0	0.802	21.1	LOS C	8.3	60.1	0.97	1.20	40.0
Approac	ch	805	6.2	0.802	15.8	LOS B	8.3	60.1	0.93	1.13	42.3
East: Ha	arbour Dr	ive									
4	L	29	0.0	0.706	11.1	LOS B	6.1	43.7	0.89	1.06	47.0
5	Т	621	2.7	0.706	10.0	LOS B	6.1	43.7	0.89	1.01	46.6
6	R	425	3.1	0.706	18.3	LOS B	5.6	40.0	0.89	1.08	41.2
Approac	ch	1075	2.8	0.706	13.3	LOS B	6.1	43.7	0.89	1.04	44.2
North: H	logbin Dr	ive									
7	L	188	2.1	0.693	11.6	LOS B	6.5	47.0	0.90	1.07	46.3
8	Т	767	4.0	0.693	11.0	LOS B	6.5	47.0	0.89	1.05	45.7
9	R	150	7.3	0.693	18.8	LOS B	6.0	43.5	0.89	1.11	41.8
Approac	ch	1105	4.2	0.693	12.2	LOS B	6.5	47.0	0.89	1.06	45.2
West: H	arbour D	rive									
10	L	214	13.1	0.767	27.2	LOS C	10.9	81.8	1.00	1.32	34.9
11	Т	569	4.2	0.767	27.1	LOS C	10.9	81.8	1.00	1.32	34.3
12	R	60	21.7	0.767	35.4	LOS D	9.5	70.2	1.00	1.29	32.7
Approac	ch	843	7.7	0.767	27.7	LOS C	10.9	81.8	1.00	1.31	34.3
All Vehic	cles	3828	5.0	0.802	16.7	LOS B	10.9	81.8	0.92	1.13	41.5

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

SIDRA INTERSECTION

MOVEMENT SUMMARY

Hogbin Drive/Harbour Drive Roundabout

Moven	nent Per	formance - \	Vehicles								
		Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID		Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
	Hogbin D										
1	L	242	7.9	0.421	11.0	LOS B	2.3	17.4	0.78	0.92	46.2
2	Т	422	5.5	0.701	11.2	LOS B	6.3	45.9	0.90	1.07	45.5
3	R	159	5.0	0.701	18.0	LOS B	6.3	45.9	0.90	1.12	42.4
Approa	ch	823	6.1	0.701	12.4	LOS B	6.3	45.9	0.87	1.04	45.0
East: H	arbour Di	rive									
4	L	37	0.0	0.569	9.4	LOSA	4.0	28.6	0.82	0.88	47.7
5	Т	517	2.9	0.569	8.4	LOSA	4.0	28.6	0.82	0.82	47.1
6	R	332	2.7	0.569	16.3	LOS B	3.7	26.4	0.82	1.02	42.7
Approa	ch	886	2.7	0.569	11.4	LOS B	4.0	28.6	0.82	0.89	45.3
North: F	Hogbin Dı	rive									
7	L	127	4.7	0.612	9.7	LOSA	5.0	36.7	0.82	0.91	47.5
8	Т	729	4.8	0.612	8.8	LOSA	5.0	36.7	0.82	0.86	46.9
9	R	218	2.8	0.612	16.3	LOS B	4.7	34.2	0.82	1.05	43.3
Approa	ch	1074	4.4	0.612	10.4	LOS B	5.0	36.7	0.82	0.91	46.2
West: F	larbour D	rive									
10	L	231	7.8	0.628	16.3	LOS B	6.8	50.3	0.99	1.12	42.0
11	Т	533	5.1	0.628	16.0	LOS B	6.8	50.3	0.98	1.12	41.5
12	R	49	10.2	0.628	23.6	LOS C	6.1	44.9	0.97	1.14	38.9
Approa	ch	813	6.2	0.628	16.5	LOS B	6.8	50.3	0.98	1.12	41.5
All Vehi	cles	3596	4.8	0.701	12.5	LOS B	6.8	50.3	0.87	0.98	44.6

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Processed: Thursday, 13 December 2012 1:41:39 PM

SIDRA Standard Delay Model used.

SIDRA INTERSECTION 5.1.12.2089

8000283, BITZIOS CONSULTING, FLOATING

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2022 SIDRA Intersections.sip

SIDRA INTERSECTION

Site: PM Site 5 Orlando Street

MOVEMENT SUMMARY

Site: AM Site 5 Orlando Street

Hogbin Drive/Orlando Street Roundabout

Movem	nent Per	formance - \	Vehicles								
		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 11 5		veh/h	%	v/c	sec		veh	m		per veh	km/h
		nd Street									
21	L	71	14.1	0.172	13.9	LOS B	8.0	6.4	0.71	0.88	43.7
22	Т	233	6.4	0.523	11.7	LOS B	4.3	31.4	0.85	0.93	45.0
23	R	180	3.3	0.523	16.7	LOS B	4.3	31.4	0.85	0.98	42.3
Approac	ch	484	6.4	0.523	13.9	LOS B	4.3	31.4	0.82	0.94	43.8
North E	ast: Hogl	oin Drive									
24	L	249	6.0	1.407	388.3	LOS F	168.6	1215.0	1.00	6.18	5.1
25	Т	522	1.3	1.407	387.4	LOS F	168.6	1215.0	1.00	6.20	5.2
26	R	67	10.4	1.407	392.7	LOS F	168.6	1215.0	1.00	6.11	5.3
Approac	ch	838	3.5	1.407	388.1	LOS F	168.6	1215.0	1.00	6.19	5.2
North W	/est: Orla	indo Street									
27	L	52	11.5	0.153	15.7	LOS B	0.8	6.0	0.78	0.91	42.1
28	Т	408	5.9	1.193	205.3	LOS F	95.5	697.2	1.00	4.28	9.0
29	R	339	3.8	1.193	210.3	LOS F	95.5	697.2	1.00	4.29	9.2
Approac	ch	799	5.4	1.193	195.1	LOS F	95.5	697.2	0.99	4.07	9.6
South V	Vest: Hog	bin Drive									
30	L	263	4.2	0.377	10.5	LOS B	2.2	15.8	0.67	0.81	46.6
31	Т	621	2.7	0.715	11.6	LOS B	8.2	58.9	0.87	0.94	45.4
32	R	78	7.7	0.715	16.8	LOS B	8.2	58.9	0.87	0.99	42.7
Approac	ch	962	3.5	0.715	11.7	LOS B	8.2	58.9	0.82	0.91	45.5
All Vehic	cles	3083	4.4	1.407	161.9	LOS F	168.6	1215.0	0.91	3.17	11.1

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

SIDRA INTERSECTION

Processed: Thursday, 13 December 2012 1:42:44 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.12.2089 www.sidrasolutions.com
Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2022 SIDRA Intersections.sip 8000283, BITZIOS CONSULTING, FLOATING

MOVEMENT SUMMARY

Hogbin Drive/Orlando Street Roundabout

Moven	nent Per	rformance - V	/ehicles								
		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 11 5		veh/h	%	v/c	sec		veh	m		per veh	km/h
		nd Street									
21	L	59	6.8	0.156	14.7	LOS B	0.8	5.9	0.77	0.90	42.9
22	Т	289	4.2	0.791	22.7	LOS C	10.9	79.4	1.00	1.28	36.6
23	R	231	4.3	0.791	27.8	LOS C	10.9	79.4	1.00	1.28	35.2
Approac	ch	579	4.5	0.791	23.9	LOS C	10.9	79.4	0.98	1.24	36.5
North E	ast: Hogl	bin Drive									
24	L	164	3.0	1.012	57.7	LOS E	37.5	268.0	1.00	2.09	23.3
25	Т	520	2.3	1.012	56.9	LOS E	37.5	268.0	1.00	2.09	23.4
26	R	66	1.5	1.012	62.0	LOS E	37.5	268.0	1.00	2.09	23.1
Approac	ch	750	2.4	1.012	57.5	LOS E	37.5	268.0	1.00	2.09	23.3
North W	/est: Orla	ando Street									
27	L	144	5.6	0.409	18.0	LOS B	2.6	19.2	0.89	1.00	40.2
28	Т	212	1.4	0.876	36.9	LOS D	15.3	109.7	1.00	1.48	29.5
29	R	273	3.7	0.876	42.0	LOS D	15.3	109.7	1.00	1.48	28.7
Approac	ch	629	3.3	0.876	34.8	LOS C	15.3	109.7	0.98	1.37	31.0
South V	Vest: Hog	gbin Drive									
30	L	275	3.3	0.454	12.3	LOS B	3.0	21.9	0.79	0.93	44.9
31	Т	665	0.9	0.854	18.8	LOS B	14.3	100.9	1.00	1.23	39.5
32	R	60	0.0	0.854	23.9	LOS C	14.3	100.9	1.00	1.23	37.7
Approac	ch	1000	1.5	0.854	17.3	LOS B	14.3	100.9	0.94	1.15	40.7
All Vehi	cles	2958	2.7	1.012	32.5	LOS C	37.5	268.0	0.97	1.45	31.8

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 13 December 2012 1:43:23 PM SIDRA INTERSECTION 5.1.12.2089

8000283, BITZIOS CONSULTING, FLOATING

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2022 SIDRA Intersections.sip

Site: AM Site 6 Earl Street/Harbour **Drive**

Earl Street/Harbour Drive Roundabout

Movem	nent Per	formance - V	/ehicles								
Mov ID		Demand Flow	HV	Deg. Satn	Average Delav	Level of Service	95% Back o	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h		v/c	sec	Gervice	vernicies			per veh	km/h
South E	ast: Harb	our Drive	- / -								
21	L	302	7.9	0.289	6.7	LOSA	1.5	11.4	0.38	0.55	49.4
22	T	653	2.0	0.494	5.2	LOSA	3.5	24.8	0.43	0.47	50.1
23	R	56	0.0	0.494	12.0	LOS B	3.5	24.8	0.43	0.82	46.6
Approac	ch	1011	3.7	0.494	6.0	LOSA	3.5	24.8	0.41	0.51	49.7
North E	ast: Earl :	Street									
24	L	32	0.0	0.163	10.5	LOS B	0.9	6.6	0.76	0.81	46.5
25	Т	33	3.0	0.163	9.5	LOSA	0.9	6.6	0.76	0.79	46.8
26	R	36	8.3	0.163	16.5	LOS B	0.9	6.6	0.76	0.91	43.1
Approac	ch	101	4.0	0.163	12.3	LOS B	0.9	6.6	0.76	0.84	45.3
North W	est: Harb	our Drive									
27	L	86	1.2	0.203	8.8	LOSA	1.1	7.7	0.65	0.75	48.1
28	Т	505	4.4	0.547	7.6	LOS A	4.8	34.7	0.78	0.71	47.3
29	R	105	5.7	0.547	14.5	LOS B	4.8	34.7	0.79	0.90	45.3
Approac	ch	696	4.2	0.547	8.8	LOS A	4.8	34.7	0.77	0.75	47.0
South W	Vest: Earl	Street									
30	L	297	0.3	1.036	78.2	LOS E	46.8	332.2	1.00	2.59	19.0
31	Т	84	1.2	1.036	77.2	LOS E	46.8	332.2	1.00	2.59	19.1
32	R	389	2.8	1.036	84.1	LOS F	46.8	332.2	1.00	2.59	19.3
Approac	ch	770	1.7	1.036	81.1	LOS F	46.8	332.2	1.00	2.59	19.2
All Vehic	cles	2578	3.2	1.036	29.4	LOS C	46.8	332.2	0.70	1.21	33.0

Level of Service (LOS) Method: Delay (HCM 2000). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 13 December 2012 1:44:21 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.12.2089 www.sidrasolutions.com

Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2022_SIDRA Intersections.sip 8000283, BITZIOS CONSULTING, FLOATING

MOVEMENT SUMMARY

Site: PM Site 6 Earl Street/Harbour

Earl Street/Harbour Drive Roundabout

Movem	ient Perf	ormance - V	enicles		<u> </u>		050/ B				
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back of Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h		v/c	sec	Service	verlicies	Distance		per veh	speed km/
South E	ast: Harb		70	V/ O			٧٥١١			poi voii	IXIII/
21	L	307	7.5	0.303	7.0	LOSA	1.6	12.1	0.44	0.59	49.
22	Т	609	3.4	0.488	5.5	LOSA	3.4	24.4	0.49	0.50	49.
23	R	54	0.0	0.488	12.3	LOS B	3.4	24.4	0.49	0.83	46.0
Approac	ch	970	4.5	0.488	6.4	LOSA	3.4	24.4	0.48	0.54	49.
North Ea	ast: Earl S	Street									
24	L	56	0.0	0.358	12.4	LOS B	2.3	15.8	0.86	0.94	44.
25	Т	71	0.0	0.358	11.4	LOS B	2.3	15.8	0.86	0.92	44.
26	R	68	0.0	0.358	18.3	LOS B	2.3	15.8	0.86	0.99	41.
Approac	ch	195	0.0	0.358	14.1	LOS B	2.3	15.8	0.86	0.95	43.
North W	est: Harb	our Drive									
27	L	73	0.0	0.243	9.1	LOSA	1.3	9.5	0.68	0.79	48.
28	Т	629	2.4	0.654	9.1	LOSA	7.0	50.3	0.86	0.88	46.
29	R	99	3.0	0.654	16.2	LOS B	7.0	50.3	0.89	0.97	44.
Approac	ch	801	2.2	0.654	10.0	LOSA	7.0	50.3	0.85	0.89	46.
South W	/est: Earl	Street									
30	L	237	0.4	0.985	50.7	LOS D	32.0	226.9	1.00	2.02	24.
31	Т	98	0.0	0.985	49.8	LOS D	32.0	226.9	1.00	2.02	25.
32	R	400	2.5	0.985	56.7	LOS E	32.0	226.9	1.00	2.02	24.
Approac	ch	735	1.5	0.985	53.8	LOS D	32.0	226.9	1.00	2.02	24.
All Vehic	cles	2701	2.7	0.985	20.9	LOS C	32.0	226.9	0.76	1.07	37.

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 13 December 2012 1:45:11 PM SIDRA INTERSECTION 5.1.12.2089

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2022 SIDRA Intersections.sip

8000283, BITZIOS CONSULTING, FLOATING

SIDRA INTERSECTION

Site: AM Site 1 Sawtell Road -Upgrade

Hogbin Drive/Sawtell Road Roundabout

Movem	nent Perf	ormance - \	Vehicles								
		Demand		Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 41 7	F 1	veh/h	%	v/c	sec		veh	m		per veh	km/h
	Toormina I										
1	L	222	3.6	0.631	10.6	LOS B	5.8	41.7	0.84	0.97	47.2
2	Т	837	3.7	0.631	9.9	LOSA	5.8	41.7	0.84	0.96	46.7
3	R	69	1.4	0.631	17.2	LOS B	5.4	39.0	0.84	1.08	43.1
Approac	ch	1128	3.5	0.631	10.5	LOS B	5.8	41.7	0.84	0.97	46.6
East: Sa	awtell Roa	ıd									
4	L	100	8.0	0.262	9.7	LOSA	1.2	9.1	0.68	0.84	47.9
5	Т	182	2.2	0.567	8.6	LOS A	4.4	31.1	0.75	0.82	46.7
6	R	434	1.8	0.567	15.6	LOS B	4.4	31.1	0.79	1.00	43.4
Approac	ch	716	2.8	0.567	13.0	LOS B	4.4	31.1	0.76	0.93	44.7
North: F	logbin Dri	ve									
7	L	211	0.5	0.396	7.8	LOSA	2.8	20.0	0.69	0.68	47.9
8	Т	458	6.8	0.396	6.9	LOS A	2.8	20.0	0.70	0.63	47.8
9	R	93	10.8	0.396	14.1	LOS B	2.6	19.3	0.70	0.89	45.4
Approac	ch	762	5.5	0.396	8.1	LOSA	2.8	20.0	0.70	0.67	47.5
West: S	awtell Roa	ad									
10	L	327	4.3	0.637	17.3	LOS B	4.9	35.4	0.92	1.09	40.7
11	Т	167	3.6	0.629	13.7	LOS B	5.5	39.9	0.94	1.10	42.6
12	R	261	5.7	0.629	20.6	LOS C	5.5	39.9	0.94	1.12	40.1
Approac	ch	755	4.6	0.637	17.7	LOS B	5.5	39.9	0.93	1.10	40.9
All Vehic	cles	3361	4.1	0.637	12.1	LOS B	5.8	41.7	0.81	0.92	44.9

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Friday, 14 December 2012 12:10:04 PM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2022 SIDRA Intersections.sip

8000283, BITZIOS CONSULTING, FLOATING

MOVEMENT SUMMARY

Site: PM Site 1 Sawtell Road -Upgrade

Hogbin Drive/Sawtell Road Roundabout

Movem	nent Per	rformance - V	ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back o Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
0 11 7		veh/h	%	v/c	sec		veh	m		per veh	km/h
	Toormina										
1	L	240	1.3	0.421	8.5	LOSA	2.9	20.7	0.73	0.74	47.6
2	T	447	2.0	0.421	7.6	LOSA	2.9	20.7	0.73	0.69	47.4
3	R	100	1.0	0.421	14.7	LOS B	2.8	19.6	0.73	0.91	44.8
Approac	ch	787	1.7	0.421	8.8	LOSA	2.9	20.7	0.73	0.74	47.1
East: Sa	awtell Ro	ad									
4	L	177	5.6	0.325	10.9	LOS B	1.8	12.9	0.80	0.90	46.3
5	Т	154	1.9	0.497	9.8	LOSA	3.6	26.2	0.87	0.94	45.8
6	R	220	4.1	0.497	16.7	LOS B	3.6	26.2	0.87	1.03	42.8
Approac	ch	551	4.0	0.497	12.9	LOS B	3.6	26.2	0.85	0.97	44.7
North: F	logbin D	rive									
7	L	347	1.7	0.642	10.7	LOS B	6.6	47.3	0.85	0.92	46.9
8	Т	638	3.4	0.642	10.0	LOSA	6.6	47.3	0.85	0.92	46.3
9	R	228	3.5	0.642	17.3	LOS B	6.3	45.1	0.85	1.01	42.7
Approac	ch	1213	3.0	0.642	11.5	LOS B	6.6	47.3	0.85	0.94	45.7
West: S	awtell Ro	oad									
10	L	175	4.6	0.249	9.0	LOS A	1.2	8.7	0.66	0.78	47.7
11	Т	188	0.5	0.481	7.6	LOSA	3.2	23.0	0.74	0.72	46.8
12	R	290	2.1	0.481	14.5	LOS B	3.2	23.0	0.74	0.94	44.5
Approac		653	2.3	0.481	11.0	LOS B	3.2	23.0	0.72	0.84	45.9
All Vehic	cles	3204	2.7	0.642	11.0	LOS B	6.6	47.3	0.79	0.87	45.9

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Friday, 14 December 2012 12:11:06 PM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2022 SIDRA Intersections.sip 8000283, BITZIOS CONSULTING, FLOATING

Site: AM Site 2 Stadium Drive/ **Doug Knight Drive - Upgrade**

Hogbin Drive/Doug Knight Drive Roundabout

		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow		Satn	Delay			Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/l
South: F	logbin Dri										
1	L	185	16.8	0.697	9.1	LOS A	7.4	54.2	0.74	0.79	47.
2	Т	1296	2.2	0.697	7.9	LOSA	7.4	54.2	0.75	0.75	47.
3	R	130	10.0	0.697	15.2	LOS B	7.3	52.8	0.76	0.91	44.
Approac	:h	1611	4.5	0.697	8.6	LOSA	7.4	54.2	0.75	0.76	47.
East: Do	oug Knigh	t Drive									
4	L	35	37.1	0.102	13.7	LOS B	0.4	4.1	0.74	0.87	44.
5	T	49	14.3	0.117	8.5	LOSA	0.6	4.9	0.77	0.75	47.
6	R	30	3.3	0.117	15.1	LOS B	0.6	4.9	0.77	0.89	44.
Approac	:h	114	18.4	0.117	11.8	LOS B	0.6	4.9	0.76	0.82	45.
North: H	logbin Dri	ve									
7	L	284	4.6	0.571	8.9	LOSA	4.6	33.6	0.71	0.79	47.
8	T	800	4.9	0.654	7.8	LOSA	6.5	47.5	0.74	0.75	47.
9	R	252	5.6	0.654	14.7	LOS B	6.5	47.5	0.76	0.89	44.
Approac	:h	1336	4.9	0.654	9.3	LOSA	6.5	47.5	0.74	0.78	46.
West: St	tadium Dr	ive									
10	L	449	1.8	0.648	12.3	LOS B	4.9	35.1	0.91	1.06	44.
11	T	130	0.8	0.560	12.1	LOS B	3.4	24.6	0.86	0.99	44.
12	R	140	9.3	0.560	19.1	LOS B	3.4	24.6	0.86	1.05	41.
Approac	:h	719	3.1	0.648	13.6	LOS B	4.9	35.1	0.89	1.05	43.
All Vehic	cles	3780	4.8	0.697	9.9	LOS A	7.4	54.2	0.77	0.83	46.

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 20 December 2012 8:43:23 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2022 SIDRA Intersections.sip 8000283, BITZIOS CONSULTING, FLOATING

MOVEMENT SUMMARY

Site: PM Site 2 Stadium Drive/ **Doug Knight Drive - Upgrade**

Hogbin Drive/Doug Knight Drive Roundabout

Movem	nent Per	formance - \	/ehicles								
Mov ID		Demand Flow veh/h		Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: F	Hobgin Dı	rive									
1	L	122	4.9	0.470	8.6	LOSA	3.3	23.5	0.70	0.76	48.1
2	T	773	2.2	0.470	7.7	LOSA	3.3	23.5	0.70	0.71	48.0
3	R	41	12.2	0.470	15.1	LOS B	3.2	22.9	0.71	0.95	44.8
Approac	ch	936	3.0	0.470	8.2	LOS A	3.3	23.5	0.70	0.73	47.8
East: Do	oug Knigh	nt Drive									
4	L	70	7.1	0.139	11.3	LOS B	0.6	4.8	0.75	0.87	46.0
5	Т	67	4.5	0.278	8.6	LOSA	1.6	11.3	0.80	0.78	46.2
6	R	140	4.3	0.278	15.5	LOS B	1.6	11.3	0.80	0.96	43.6
Approac	ch	277	5.1	0.278	12.8	LOS B	1.6	11.3	0.79	0.89	44.8
North: H	lobgin Dr	ive									
7	L	65	13.8	0.495	7.2	LOSA	3.4	24.5	0.51	0.61	49.2
8	Т	935	2.2	0.567	5.6	LOSA	4.4	31.8	0.52	0.51	49.1
9	R	358	4.7	0.567	12.4	LOS B	4.4	31.8	0.53	0.75	45.8
Approac	ch	1358	3.5	0.567	7.5	LOS A	4.4	31.8	0.52	0.58	48.2
West: S	tadium D	rive									
10	L	279	5.4	0.306	8.1	LOSA	1.6	11.9	0.70	0.70	47.5
11	Т	32	12.5	0.256	7.8	LOSA	1.2	9.0	0.69	0.69	46.9
12	R	143	6.3	0.256	14.6	LOS B	1.2	9.0	0.69	0.92	44.1
Approac	ch	454	6.2	0.306	10.1	LOS B	1.6	11.9	0.69	0.77	46.3
All Vehic	cles	3025	3.9	0.567	8.6	LOSA	4.4	31.8	0.63	0.68	47.4

Level of Service (LOS) Method: Delay (HCM 2000). Roundabout LOS Method: Same as Signalised Intersections. Vehicle movement LOS values are based on average delay per movement Intersection and Approach LOS values are based on average delay for all vehicle movements. Roundabout Capacity Model: SIDRA Standard. SIDRA Standard Delay Model used.

Processed: Thursday, 20 December 2012 8:43:24 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093

www.sidrasolutions.com

Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2022 SIDRA Intersections.sip 8000283, BITZIOS CONSULTING, FLOATING

Site: AM Site 5 Orlando Street -Upgrade

Hogbin Drive/Orlando Street Roundabout

Movem	nent Per	formance - \	/ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed
South E	ast: Orlar	veh/h	%	v/c	sec		veh	m		per veh	km/h
21	.ast. Onai L	71	14.1	0.184	14.8	LOS B	0.9	6.9	0.73	0.89	42.9
22	Т	233	6.4	0.164	13.2	LOS B	4.9	36.1	0.73	1.00	43.6
23	R	180	3.3	0.559	18.3	LOS B	4.9	36.1	0.89	1.00	41.2
		484	6.4	0.559	15.3	LOS B	4.9	36.1	0.89	1.04	41.2
Approac	on	404	0.4	0.559	15.3	LUS B	4.9	30.1	0.07	1.00	42.5
North E	ast: Hogb	in Drive									
24	L	249	6.0	1.355	338.1	LOS F	150.6	1085.8	1.00	6.35	5.8
25	Т	522	1.3	1.355	337.2	LOS F	150.6	1085.8	1.00	6.37	5.9
26	R	67	10.4	1.355	342.5	LOS F	150.6	1085.8	1.00	6.27	6.0
Approac	ch	838	3.5	1.355	337.9	LOS F	150.6	1085.8	1.00	6.35	5.9
North W	lest: Orla	ndo Street									
27	L	52	11.5	0.548	18.5	LOS B	4.3	31.7	0.92	1.06	40.6
28	Т	408	5.9	0.876	25.0	LOS C	15.7	114.1	0.96	1.26	35.3
29	R	339	3.8	0.876	37.5	LOS D	15.7	114.1	1.00	1.47	30.4
Approac	ch	799	5.4	0.876	29.9	LOS C	15.7	114.1	0.97	1.34	33.3
South V	Vest: Hog	bin Drive									
30	L	263	4.2	0.379	10.5	LOS B	2.2	16.0	0.68	0.82	46.6
31	Т	621	2.7	0.720	11.7	LOS B	8.4	60.1	0.88	0.94	45.3
32	R	78	7.7	0.720	16.9	LOS B	8.4	60.1	0.88	1.00	42.6
Approac	ch	962	3.5	0.720	11.8	LOS B	8.4	60.1	0.83	0.91	45.4
All Vehic	cles	3083	4.4	1.355	105.7	LOSF	150.6	1085.8	0.92	2.51	15.5

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Copyright © 2000-2011 Akcelik and Associates Pty Ltd Processed: Thursday, 20 December 2012 8:43:25 AM SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2022 SIDRA Intersections.sip

8000283, BITZIOS CONSULTING, FLOATING

MOVEMENT SUMMARY

Site: PM Site 5 Orlando Street -Upgrade

Hogbin Drive/Orlando Street Roundabout

Movem	nent Per	formance - \	/ehicles								
Mau ID		Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID		Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South F	act: Orla	veh/h nd Street	%	v/c	sec		veh	m		per veh	km/h
21	L L	59	6.8	0.157	14.8	LOS B	0.8	6.0	0.78	0.90	42.8
22	T	289	4.2	0.799	23.5	LOS C	11.3	81.8	1.00	1.29	36.1
23	R	231				LOS C	11.3		1.00	1.29	
_			4.3	0.799	28.6			81.8			34.7
Approac	cn	579	4.5	0.799	24.6	LOS C	11.3	81.8	0.98	1.25	36.1
North E	ast: Hogl	bin Drive									
24	L	164	3.0	0.962	32.0	LOS C	23.2	165.7	1.00	1.60	32.1
25	Т	520	2.3	0.962	31.3	LOS C	23.2	165.7	1.00	1.60	32.2
26	R	66	1.5	0.962	36.3	LOS D	23.2	165.7	1.00	1.60	31.2
Approac	ch	750	2.4	0.962	31.9	LOS C	23.2	165.7	1.00	1.60	32.1
N141- NA	14- O-1-										
		ando Street									
27	L	144	5.6	0.484	18.2	LOS B	3.6	26.0	0.93	1.04	40.3
28	Т	212	1.4	0.774	23.4	LOS C	10.2	72.9	0.98	1.21	36.0
29	R	273	3.7	0.774	30.9	LOS C	10.2	72.9	1.00	1.27	33.4
Approac	ch	629	3.3	0.774	25.4	LOS C	10.2	72.9	0.98	1.20	35.6
South V	Vest: Hog	gbin Drive									
30	L	275	3.3	0.454	12.3	LOS B	3.0	21.9	0.79	0.93	44.8
31	Т	665	0.9	0.855	18.9	LOS B	14.4	101.2	1.00	1.23	39.4
32	R	60	0.0	0.855	24.0	LOS C	14.4	101.2	1.00	1.23	37.7
Approac	ch	1000	1.5	0.855	17.4	LOS B	14.4	101.2	0.94	1.15	40.7
All Vehic	cles	2958	2.7	0.962	24.2	LOS C	23.2	165.7	0.97	1.29	36.2

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 20 December 2012 8:43:25 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2022 SIDRA Intersections.sip

Site: AM Site 6 Earl Street/Harbour **Drive - Upgrade**

Earl Street/Harbour Drive Roundabout

Moven	nent Perf	ormance - V	/ehicles								
MID		Demand	HV	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID		Flow veh/h	пv %	Satn v/c	Delay	Service	Vehicles veh	Distance	Queued	Stop Rate	Speed
South E	ast: Harb		70	V/C	sec	_	ven	m	_	per veh	km/ł
21	L	302	7.9	0.288	6.7	LOS A	1.5	11.2	0.38	0.55	49.5
22	Т	653	2.0	0.493	5.2	LOS A	3.4	24.3	0.42	0.47	50.1
23	R	56	0.0	0.493	12.0	LOS B	3.4	24.3	0.42	0.82	46.6
Approac	ch	1011	3.7	0.493	6.0	LOS A	3.4	24.3	0.41	0.51	49.7
North E	ast: Earl S	Street									
24	L	32	0.0	0.161	10.6	LOS B	0.9	6.4	0.75	0.81	46.3
25	Т	33	3.0	0.161	9.7	LOSA	0.9	6.4	0.75	0.79	46.6
26	R	36	8.3	0.161	16.7	LOS B	0.9	6.4	0.75	0.91	43.0
Approach		101	4.0	0.161	12.5	LOS B	0.9	6.4	0.75	0.84	45.
North W	/est: Harb	our Drive									
27	L	86	1.2	0.191	8.3	LOSA	0.9	6.3	0.58	0.74	48.4
28	T	505	4.4	0.514	6.8	LOS A	3.7	26.6	0.68	0.64	48.0
29	R	105	5.7	0.514	13.7	LOS B	3.7	26.6	0.69	0.92	45.8
Approac	ch	696	4.2	0.514	8.1	LOS A	3.7	26.6	0.67	0.69	47.7
South V	Vest: Earl	Street									
30	L	297	0.3	0.488	11.4	LOS B	3.7	26.2	0.82	0.92	45.9
31	T	84	1.2	0.488	10.2	LOS B	3.7	26.2	0.82	0.90	46.3
32	R	389	2.8	0.422	15.3	LOS B	3.0	21.5	0.79	0.86	43.3
Approac	ch	770	1.7	0.488	13.2	LOS B	3.7	26.2	0.80	0.89	44.6
All Vehi	cles	2578	3.2	0.514	9.0	LOS A	3.7	26.6	0.61	0.69	47.3

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 20 December 2012 8:43:26 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2022_SIDRA Intersections.sip 8000283, BITZIOS CONSULTING, FLOATING

SIDRA INTERSECTION

MOVEMENT SUMMARY

Site: PM Site 6 Earl Street/Harbour **Drive - Upgrade**

Earl Street/Harbour Drive Roundabout

			/. I. * . I								
Movem	ient Peri	ormance - V	enicles				050/ D1-			F#	
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back of Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h		v/c	sec	Service	verlicies			per veh	km/h
South E	ast: Harb		/0	V/ O			VOI1	- '		por vori	KIII/II
21	L	307	7.5	0.303	7.0	LOSA	1.6	12.1	0.44	0.59	49.0
22	Т	609	3.4	0.488	5.5	LOSA	3.4	24.4	0.49	0.50	49.6
23	R	54	0.0	0.488	12.3	LOS B	3.4	24.4	0.49	0.83	46.6
Approac	ch	970	4.5	0.488	6.4	LOS A	3.4	24.4	0.48	0.54	49.2
North E	ast: Earl S	Street									
24	L	56	0.0	0.345	12.2	LOS B	2.1	14.7	0.85	0.92	44.8
25	Т	71	0.0	0.345	11.3	LOS B	2.1	14.7	0.85	0.91	45.0
26	R	68	0.0	0.345	18.1	LOS B	2.1	14.7	0.85	0.98	41.9
Approac	ch	195	0.0	0.345	13.9	LOS B	2.1	14.7	0.85	0.94	43.8
North W	/est: Harb	our Drive									
27	L	73	0.0	0.222	8.5	LOSA	1.0	7.4	0.60	0.75	48.4
28	Т	629	2.4	0.597	7.5	LOSA	4.9	35.0	0.73	0.72	47.7
29	R	99	3.0	0.597	14.4	LOS B	4.9	35.0	0.75	0.96	45.3
Approac	ch	801	2.2	0.597	8.4	LOS A	4.9	35.0	0.72	0.75	47.4
South W	Vest: Earl	Street									
30	L	237	0.4	0.436	10.5	LOS B	3.0	21.3	0.79	0.88	46.8
31	Т	98	0.0	0.436	9.3	LOSA	3.0	21.3	0.79	0.85	46.9
32	R	400	2.5	0.433	15.2	LOS B	3.1	22.5	0.80	0.87	43.3
Approac	ch	735	1.5	0.436	12.9	LOS B	3.1	22.5	0.79	0.87	44.8
All Vehicles		2701	2.7	0.597	9.3	LOSA	4.9	35.0	0.66	0.72	47.0

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 20 December 2012 8:43:26 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\P1158 Hogbin Dr Intersection Assessment\Technical Work\Models\2022 SIDRA Intersections.sip 8000283, BITZIOS CONSULTING, FLOATING

APPENDIX F

DETAILED SIDRA SUMMARIES

SITE LAYOUT

∀ Site: 1 [2019 AM BG]

Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout 2019 Forecast Background Traffic Volumes AM Peak Hour Roundabout

Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout 2019 Forecast Background Traffic Volumes AM Peak Hour Roundabout

Movement Performance - Vehicles											
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 "		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	n: Hogbin I										
1	L2	147	19.0	0.488	6.1	LOS A	3.6	26.5	0.66	0.59	52.9
2	T1	803	2.0	0.488	5.8	LOS A	3.6	26.5	0.66	0.61	54.7
3	R2	81	9.0	0.488	11.9	LOS B	3.5	25.0	0.67	0.62	51.1
Appro	oach	1032	5.0	0.488	6.3	LOSA	3.6	26.5	0.66	0.61	54.2
East:	Doug Kni	ght Drive									
4	L2	22	33.0	0.053	7.6	LOS A	0.2	2.1	0.71	0.71	44.5
5	T1	26	18.0	0.091	3.8	LOS A	0.5	3.8	0.70	0.68	46.6
6	R2	41	11.0	0.091	8.7	LOS A	0.5	3.8	0.70	0.68	46.9
Appro	oach	89	18.5	0.091	7.0	LOSA	0.5	3.8	0.71	0.69	46.2
North	: Hogbin [Orive									
7	L2	203	5.0	0.413	5.7	LOS A	2.7	20.1	0.61	0.60	48.0
8	T1	503	5.0	0.505	5.5	LOS A	3.9	27.9	0.62	0.62	54.3
9	R2	291	3.0	0.505	11.1	LOS B	3.9	27.9	0.64	0.64	53.9
Appro	oach	997	4.4	0.505	7.2	LOS A	3.9	27.9	0.62	0.62	53.2
West	: Stadium	Drive									
10	L2	335	3.0	0.411	7.2	LOS A	2.5	17.9	0.77	0.89	53.5
11	T1	125	1.0	0.370	8.1	LOS A	2.0	14.7	0.77	0.89	47.3
12	R2	105	9.0	0.370	14.2	LOS B	2.0	14.7	0.77	0.89	52.7
Appro	oach	565	3.7	0.411	8.7	LOSA	2.5	17.9	0.77	0.89	52.2
All Ve	hicles	2683	4.9	0.505	7.2	LOSA	3.9	27.9	0.67	0.67	53.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Wednesday, 22 August 2018 2:19:34 PM
Project: P:\P3480 SCU Coffs Harbour TIA\Technical Work\Models\P3480.004M Hogbin Roundabout_1.0PC.sip7

∀ Site: 1 [2019 AM DES]

Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout 2019 Forecast Design Traffic Volumes AM Peak Hour Roundabout

Movement Performance - Vehicles												
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average	
ID	Mov	Total veh/h	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
South	South: Hogbin Drive		%	v/c	sec		veh	m		per veh	km/h	
•		147	19.0	0.493	6.2	LOSA	3.6	26.9	0.67	0.59	52.9	
1	L2											
2	T1	803	2.0	0.493	5.8	LOSA	3.6	26.9	0.67	0.61	54.6	
3	R2	86	9.0	0.493	11.9	LOS B	3.5	25.4	0.68	0.63	51.0	
Appro	oach	1037	5.0	0.493	6.4	LOS A	3.6	26.9	0.67	0.61	54.1	
East:	Doug Kni	ght Drive										
4	L2	24	33.0	0.058	7.6	LOS A	0.3	2.4	0.72	0.71	44.5	
5	T1	28	18.0	0.099	3.9	LOSA	0.5	4.2	0.71	0.69	46.6	
6	R2	44	11.0	0.099	8.7	LOSA	0.5	4.2	0.71	0.69	46.8	
Appro	oach	97	18.6	0.099	7.0	LOS A	0.5	4.2	0.71	0.70	46.2	
North	: Hogbin [Orive										
7	L2	217	5.0	0.424	5.9	LOS A	2.8	20.7	0.62	0.62	48.0	
8	T1	503	5.0	0.518	5.7	LOSA	4.0	29.0	0.64	0.63	54.2	
9	R2	291	3.0	0.518	11.2	LOS B	4.0	29.0	0.66	0.65	53.9	
Appro	oach	1011	4.4	0.518	7.3	LOS A	4.0	29.0	0.64	0.63	53.1	
West	Stadium	Drive										
10	L2	335	3.0	0.414	7.3	LOS A	2.5	18.2	0.78	0.90	53.4	
11	T1	134	1.0	0.385	8.3	LOSA	2.1	15.5	0.77	0.90	47.3	
12	R2	105	9.0	0.385	14.3	LOS B	2.1	15.5	0.77	0.90	52.6	
Appro	ach	574	3.6	0.414	8.8	LOS A	2.5	18.2	0.78	0.90	52.1	
All Ve	hicles	2718	5.0	0.518	7.3	LOSA	4.0	29.0	0.68	0.68	53.1	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Wednesday, 22 August 2018 2:19:36 PM
Project: P:\P3480 SCU Coffs Harbour TIA\Technical Work\Models\P3480.004M Hogbin Roundabout_1.0PC.sip7

∀ Site: 1 [2019 PM BG]

Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout 2019 Forecast Background Traffic Volumes PM Peak Hour Roundabout

Movement Performance - Vehicles											
Mov	OD	Demand	l Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 "		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	n: Hogbin										
1	L2	67	3.0	0.166	4.6	LOS A	0.9	6.3	0.40	0.47	54.6
2	T1	324	1.0	0.166	4.6	LOS A	0.9	6.3	0.41	0.47	56.3
3	R2	4	40.0	0.166	11.2	LOS B	0.9	6.2	0.41	0.47	53.2
Appro	oach	396	1.8	0.166	4.7	LOSA	0.9	6.3	0.41	0.47	55.9
East:	Doug Kni	ght Drive									
4	L2	6	43.0	0.016	7.7	LOS A	0.1	0.6	0.65	0.60	44.2
5	T1	12	17.0	0.037	2.9	LOS A	0.2	1.2	0.59	0.58	47.2
6	R2	21	0.0	0.037	7.5	LOS A	0.2	1.2	0.59	0.58	47.9
Appro	oach	39	12.0	0.037	6.2	LOSA	0.2	1.2	0.60	0.59	47.1
North	: Hogbin [Orive									
7	L2	6	0.0	0.228	4.4	LOS A	1.3	9.2	0.37	0.43	49.2
8	T1	428	2.0	0.279	4.3	LOS A	1.7	12.1	0.37	0.48	55.6
9	R2	214	1.0	0.279	9.9	LOS A	1.7	12.1	0.37	0.56	54.8
Appro	oach	648	1.7	0.279	6.1	LOSA	1.7	12.1	0.37	0.50	55.3
West	Stadium	Drive									
10	L2	225	0.0	0.190	4.8	LOS A	1.0	6.8	0.47	0.57	54.7
11	T1	5	33.0	0.156	5.9	LOS A	0.8	5.4	0.48	0.69	47.1
12	R2	148	1.0	0.156	10.8	LOS B	0.8	5.4	0.48	0.69	52.7
Appro	oach	379	0.9	0.190	7.2	LOSA	1.0	6.8	0.47	0.62	53.8
All Ve	hicles	1462	1.7	0.279	6.0	LOSA	1.7	12.1	0.41	0.53	54.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Wednesday, 22 August 2018 2:19:35 PM
Project: P:\P3480 SCU Coffs Harbour TIA\Technical Work\Models\P3480.004M Hogbin Roundabout_1.0PC.sip7

∀ Site: 1 [2019 PM DES]

Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout 2019 Forecast Design Traffic Volumes PM Peak Hour Roundabout

Movement Performance - Vehicles													
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average		
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h		
South:	Hogbin [70	V/C	300		Ven	- '''		per veri	KITI/TI		
1	L2	67	3.0	0.167	4.6	LOS A	0.9	6.3	0.40	0.47	54.5		
2	T1	324	1.0	0.167	4.6	LOS A	0.9	6.3	0.41	0.47	56.2		
3	R2	5	40.0	0.167	11.2	LOS B	0.9	6.2	0.42	0.47	53.2		
Approa	ach	397	1.9	0.167	4.7	LOSA	0.9	6.3	0.41	0.47	55.9		
East: [East: Doug Knight Drive												
4	L2	7	43.0	0.019	7.7	LOS A	0.1	0.7	0.65	0.61	44.2		
5	T1	12	17.0	0.039	2.9	LOS A	0.2	1.3	0.60	0.59	47.1		
6	R2	23	0.0	0.039	7.5	LOS A	0.2	1.3	0.60	0.59	47.8		
Approa	ach	42	12.2	0.039	6.3	LOS A	0.2	1.3	0.61	0.59	47.0		
North:	Hogbin D)rive											
7	L2	7	0.0	0.229	4.4	LOS A	1.3	9.3	0.37	0.43	49.2		
8	T1	428	2.0	0.280	4.3	LOS A	1.7	12.2	0.37	0.48	55.6		
9	R2	214	1.0	0.280	9.9	LOS A	1.7	12.2	0.37	0.56	54.8		
Approa	ach	649	1.6	0.280	6.2	LOS A	1.7	12.2	0.37	0.51	55.3		
West:	Stadium I	Drive											
10	L2	225	0.0	0.191	4.8	LOS A	1.0	6.8	0.47	0.57	54.7		
11	T1	6	33.0	0.157	5.9	LOS A	0.8	5.4	0.48	0.70	47.1		
12	R2	148	1.0	0.157	10.8	LOS B	0.8	5.4	0.48	0.70	52.7		
Approa	ach	380	0.9	0.191	7.2	LOSA	1.0	6.8	0.47	0.62	53.8		
All Veh	nicles	1468	1.8	0.280	6.0	LOSA	1.7	12.2	0.41	0.53	54.8		

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Wednesday, 22 August 2018 2:19:37 PM Project: P:\P3480 SCU Coffs Harbour TIA\Technical Work\Models\P3480.004M Hogbin Roundabout_1.0PC.sip7

∀ Site: 1 [2029 AM BG]

Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout 2029 Forecast Background Traffic Volumes AM Peak Hour Roundabout

Movement Performance - Vehicles												
Mov	OD	Demand	l Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average	
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
0 41	. I I a adaisa I	veh/h	%	v/c	sec		veh	m		per veh	km/h	
	n: Hogbin I											
1	L2	207	19.0	0.797	13.2	LOS B	12.1	89.8	0.99	1.09	49.4	
2	T1	1133	2.0	0.797	13.1	LOS B	12.1	89.8	1.00	1.11	50.6	
3	R2	100	9.0	0.797	19.8	LOS B	11.6	83.5	1.00	1.13	45.7	
Appro	oach	1440	4.9	0.797	13.6	LOS B	12.1	89.8	1.00	1.11	50.2	
East:	Doug Kni	ght Drive										
4	L2	27	33.0	0.096	10.5	LOS B	0.5	4.2	0.82	0.85	42.3	
5	T1	33	18.0	0.164	6.0	LOS A	1.0	7.7	0.86	0.88	45.2	
6	R2	51	11.0	0.164	10.8	LOS B	1.0	7.7	0.86	0.88	45.5	
Appro	oach	111	18.5	0.164	9.3	LOSA	1.0	7.7	0.85	0.88	44.6	
North	: Hogbin [Orive										
7	L2	248	5.0	0.624	8.5	LOS A	6.0	44.1	0.82	0.85	46.5	
8	T1	711	5.0	0.763	9.2	LOS A	10.6	77.0	0.88	0.90	52.5	
9	R2	411	3.0	0.763	15.4	LOS B	10.6	77.0	0.92	0.94	51.6	
Appro	oach	1369	4.4	0.763	11.0	LOS B	10.6	77.0	0.88	0.90	51.4	
West	: Stadium	Drive										
10	L2	472	3.0	0.834	19.3	LOS B	8.8	63.2	1.00	1.25	45.5	
11	T1	154	1.0	0.750	18.2	LOS B	5.9	42.7	0.95	1.15	39.9	
12	R2	149	9.0	0.750	24.5	LOS C	5.9	42.7	0.95	1.15	46.1	
Appro	oach	775	3.8	0.834	20.1	LOS C	8.8	63.2	0.98	1.21	44.7	
All Ve	ehicles	3695	4.9	0.834	13.9	LOS B	12.1	89.8	0.95	1.05	49.2	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Wednesday, 22 August 2018 2:19:37 PM Project: P:\P3480 SCU Coffs Harbour TIA\Technical Work\Models\P3480.004M Hogbin Roundabout_1.0PC.sip7

∀ Site: 1 [2029 AM DES]

Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout 2029 Forecast Design Traffic Volumes AM Peak Hour Roundabout

Mov	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average														
Mov	OD	Demand	l Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average				
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed				
0 41	I I a adain	veh/h	%	v/c	sec		veh	m		per veh	km/h				
	n: Hogbin														
1	L2	207	19.0	0.802	13.4	LOS B	12.4	91.9	1.00	1.10	49.3				
2	T1	1133	2.0	0.802	13.4	LOS B	12.4	91.9	1.00	1.12	50.4				
3	R2	105	9.0	0.802	20.0	LOS C	11.9	85.4	1.00	1.13	45.4				
Appro	oach	1445	4.9	0.802	13.9	LOS B	12.4	91.9	1.00	1.11	50.0				
East:	Doug Kni	ght Drive													
4	L2	27	33.0	0.097	10.6	LOS B	0.5	4.2	0.83	0.86	42.2				
5	T1	33	18.0	0.166	6.1	LOS A	1.0	7.9	0.87	0.89	45.2				
6	R2	51	11.0	0.166	10.8	LOS B	1.0	7.9	0.87	0.89	45.4				
Appro	oach	111	18.5	0.166	9.4	LOSA	1.0	7.9	0.86	0.88	44.6				
North	: Hogbin [Orive													
7	L2	262	5.0	0.639	8.9	LOS A	6.4	46.6	0.83	0.88	46.3				
8	T1	711	5.0	0.781	9.9	LOS A	11.5	83.0	0.90	0.94	52.0				
9	R2	411	3.0	0.781	16.2	LOS B	11.5	83.0	0.94	0.98	51.2				
Appro	oach	1383	4.4	0.781	11.6	LOS B	11.5	83.0	0.90	0.94	50.9				
West	: Stadium	Drive													
10	L2	472	3.0	0.840	19.8	LOS B	9.0	64.3	1.00	1.26	45.2				
11	T1	162	1.0	0.774	19.5	LOS B	6.2	45.6	0.96	1.17	39.2				
12	R2	149	9.0	0.774	25.7	LOS C	6.2	45.6	0.96	1.17	45.5				
Appro	oach	783	3.7	0.840	20.9	LOS C	9.0	64.3	0.98	1.22	44.2				
All Ve	ehicles	3722	4.9	0.840	14.3	LOS B	12.4	91.9	0.96	1.06	48.9				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Wednesday, 22 August 2018 2:19:39 PM
Project: P:\P3480 SCU Coffs Harbour TIA\Technical Work\Models\P3480.004M Hogbin Roundabout_1.0PC.sip7

∀ Site: 1 [2029 PM BG]

Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout 2029 Forecast Background Traffic Volumes PM Peak Hour Roundabout

Move	ement Pe	rformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Hogbin [
1	L2	96	3.0	0.254	5.1	LOS A	1.5	10.8	0.52	0.53	54.0
2	T1	458	1.0	0.254	5.2	LOSA	1.5	10.8	0.53	0.53	55.6
3	R2	5	40.0	0.254	12.0	LOS B	1.5	10.5	0.53	0.53	52.4
Appro	ach	559	1.7	0.254	5.2	LOSA	1.5	10.8	0.52	0.53	55.3
East:	Doug Knig	ght Drive									
4	L2	8	43.0	0.025	9.6	LOS A	0.1	1.0	0.72	0.71	42.8
5	T1	14	17.0	0.054	4.1	LOS A	0.3	2.0	0.71	0.69	46.3
6			0.0	0.054	8.6	LOS A	0.3	2.0	0.71	0.69	47.0
Appro	ach	48	12.3	0.054	7.5	LOS A	0.3	2.0	0.71	0.70	46.0
North	: Hogbin D	Orive									
7	L2	8	0.0	0.342	4.9	LOS A	2.2	15.5	0.49	0.48	48.4
8	T1	604	2.0	0.418	4.8	LOS A	3.0	21.1	0.49	0.52	55.0
9	R2	301	1.0	0.418	10.3	LOS B	3.0	21.1	0.50	0.59	54.3
Appro	ach	914	1.7	0.418	6.6	LOSA	3.0	21.1	0.50	0.55	54.7
West:	Stadium I	Drive									
10	L2	318	0.0	0.293	5.4	LOS A	1.6	11.3	0.58	0.65	54.3
11	T1	7	33.0	0.245	6.8	LOSA	1.2	8.9	0.58	0.77	46.7
12	R2	209	1.0	0.245	11.5	LOS B	1.2	8.9	0.58	0.77	52.3
Appro	ach	535	0.8	0.293	7.8	LOSA	1.6	11.3	0.58	0.70	53.4
All Ve	hicles	2056	1.7	0.418	6.6	LOSA	3.0	21.1	0.53	0.58	54.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Wednesday, 22 August 2018 2:19:38 PM
Project: P:\P3480 SCU Coffs Harbour TIA\Technical Work\Models\P3480.004M Hogbin Roundabout_1.0PC.sip7

∀ Site: 1 [2029 PM DES]

Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout 2029 Forecast Design Traffic Volumes PM Peak Hour Roundabout

South: Hogbin Drive 1	Move	mont De	rformanee	Vobie	los –							
D Mov Total HV Sath Delay Service Vehicles Distance Queued Stop Rate Speed Speed Service Vehicles Distance Queued Stop Rate Speed Service National Service National Service National Service National Service Service Vehicles Distance Queued Stop Rate Speed Service National Service National Service National Service Service National Service Service National Service Service Service National Service Service Service National Service Service Service Service Service Service National Service Service						Average	l evel of	95% Back	of Oueue	Pron	Effective	Average
Veh/h % V/c sec veh m per veh km/s South: Hogbin Drive 1 L2 96 3.0 0.255 5.1 LOS A 1.5 10.8 0.52 0.53 54. 2 T1 458 1.0 0.255 5.2 LOS A 1.5 10.8 0.53 0.53 55. 3 R2 6 40.0 0.255 5.2 LOS A 1.5 10.5 0.53 0.53 55. Approach 560 1.8 0.255 5.3 LOS A 1.5 10.8 0.53 0.53 55. East: Doug Knight Drive 4 L2 8 43.0 0.025 9.6 LOS A 0.1 1.0 0.72 0.71 42. 5 T1 14 17.0 0.054 4.1 LOS A 0.3 2.0 0.71 0.69 46. 6 R2 26 0.0 0.054 8.6 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
1 L2 96 3.0 0.255 5.1 LOS A 1.5 10.8 0.52 0.53 54. 2 T1 458 1.0 0.255 5.2 LOS A 1.5 10.8 0.53 0.53 55. 3 R2 6 40.0 0.255 12.0 LOS B 1.5 10.5 0.53 0.53 52. Approach 560 1.8 0.255 5.3 LOS A 1.5 10.8 0.53 0.53 55. East: Doug Knight Drive 4 L2 8 43.0 0.025 9.6 LOS A 0.1 1.0 0.72 0.71 42. 5 T1 14 17.0 0.054 4.1 LOS A 0.3 2.0 0.71 0.69 46. 6 R2 26 0.0 0.054 8.6 LOS A 0.3 2.0 0.71 0.69 47. Approach 48 12.3 0.054 7.5 LOS A 0.3 2.0 0.71 0.70 46. North: Hogbin Drive 7 L2 8 0.0 0.342 4.9 LOS A 2.2 15.5 0.49 0.48 48. 8 T1 604 2.0 0.418 4.8 LOS A 3.0 21.1 0.50 0.52 55. 9 R2 301 1.0 0.418 10.3 LOS B 3.0 21.1 0.50 0.59 54. Approach 914 1.7 0.418 6.6 LOS A 1.6 11.3 0.58 0.65 54. West: Stadium Drive 10 L2 318 0.0 0.294 5.4 LOS A 1.3 8.9 0.59 0.77 46. 12 R2 209 1.0 0.246 6.8 LOS A 1.3 8.9 0.59 0.77 52. Approach 535 0.8 0.294 7.8 LOS B 1.3 8.9 0.59 0.77 52. Approach 535 0.8 0.294 7.8 LOS B 1.3 8.9 0.59 0.77 52.				%	v/c			veh	m		per veh	ˈ km/h
2 T1 458 1.0 0.255 5.2 LOS A 1.5 10.8 0.53 0.53 55. 3 R2 6 40.0 0.255 12.0 LOS B 1.5 10.5 0.53 0.53 52. Approach 560 1.8 0.255 5.3 LOS A 1.5 10.8 0.53 0.53 55. East: Doug Knight Drive 4 L2 8 43.0 0.025 9.6 LOS A 0.1 1.0 0.72 0.71 42. 5 T1 14 17.0 0.054 4.1 LOS A 0.3 2.0 0.71 0.69 46. 6 R2 26 0.0 0.054 8.6 LOS A 0.3 2.0 0.71 0.69 47. Approach 48 12.3 0.054 7.5 LOS A 0.3 2.0 0.71 0.70 46. North: Hogbin Drive 7 L2 8 0.0 0.342 4.9 LOS A 2.2 15.5 0.49 0.48 48. 8 T1 604 2.0 0.418 4.8 LOS A 3.0 21.1 0.50 0.52 55. 9 R2 301 1.0 0.418 10.3 LOS B 3.0 21.1 0.50 0.59 54. Approach 914 1.7 0.418 6.6 LOS A 3.0 21.1 0.50 0.55 54. West: Stadium Drive 10 L2 318 0.0 0.294 5.4 LOS A 1.6 11.3 0.58 0.65 54. 11 T1 7 33.0 0.246 6.8 LOS A 1.3 8.9 0.59 0.77 46. Approach 535 0.8 0.294 7.8 LOS B 1.3 8.9 0.59 0.77 52. Approach 535 0.8 0.294 7.8 LOS A 1.6 11.3 0.58 0.70 53.	South	ı: Hogbin l	Drive									
3 R2 6 40.0 0.255 12.0 LOS B 1.5 10.5 0.53 0.53 52. Approach 560 1.8 0.255 5.3 LOS A 1.5 10.8 0.53 0.53 55. East: Doug Knight Drive 4 L2 8 43.0 0.025 9.6 LOS A 0.1 1.0 0.72 0.71 42. 5 T1 14 17.0 0.054 4.1 LOS A 0.3 2.0 0.71 0.69 46. 6 R2 26 0.0 0.054 8.6 LOS A 0.3 2.0 0.71 0.69 47. Approach 48 12.3 0.054 7.5 LOS A 0.3 2.0 0.71 0.70 46. North: Hogbin Drive 7 L2 8 0.0 0.342 4.9 LOS A 2.2 15.5 0.49 0.48 48. 8 T1 604	1	L2	96	3.0	0.255	5.1	LOS A	1.5	10.8	0.52	0.53	54.0
Approach 560 1.8 0.255 5.3 LOS A 1.5 10.8 0.53 0.53 55. East: Doug Knight Drive 4 L2 8 43.0 0.025 9.6 LOS A 0.1 1.0 0.72 0.71 42. 5 T1 14 17.0 0.054 4.1 LOS A 0.3 2.0 0.71 0.69 46. 6 R2 26 0.0 0.054 8.6 LOS A 0.3 2.0 0.71 0.69 47. Approach 48 12.3 0.054 7.5 LOS A 0.3 2.0 0.71 0.70 46. North: Hogbin Drive 7 L2 8 0.0 0.342 4.9 LOS A 2.2 15.5 0.49 0.48 48. 8 T1 604 2.0 0.418 4.8 LOS A 3.0 21.1 0.50 0.52 55. 9 R2	2	T1	458	1.0	0.255	5.2	LOS A	1.5	10.8	0.53	0.53	55.6
East: Doug Knight Drive 4	3	R2	6	40.0	0.255	12.0	LOS B	1.5	10.5	0.53	0.53	52.4
4 L2 8 43.0 0.025 9.6 LOS A 0.1 1.0 0.72 0.71 42. 5 T1 14 17.0 0.054 4.1 LOS A 0.3 2.0 0.71 0.69 46. 6 R2 26 0.0 0.054 8.6 LOS A 0.3 2.0 0.71 0.69 47. Approach 48 12.3 0.054 7.5 LOS A 0.3 2.0 0.71 0.70 46. North: Hogbin Drive 7 L2 8 0.0 0.342 4.9 LOS A 2.2 15.5 0.49 0.48 48. 8 T1 604 2.0 0.418 4.8 LOS A 3.0 21.1 0.50 0.52 55. 9 R2 301 1.0 0.418 10.3 LOS B 3.0 21.1 0.50 0.59 54. Approach 914 1.7 0.418 6.6 LOS A 3.0 21.1 0.50 0.55 54. West: Stadium Drive 10 L2 318 0.0 0.294 5.4 LOS A 1.6 11.3 0.58 0.65 54. 11 T1 7 33.0 0.246 6.8 LOS A 1.3 8.9 0.59 0.77 46. 12 R2 209 1.0 0.246 11.5 LOS B 1.3 8.9 0.59 0.77 52. Approach 535 0.8 0.294 7.8 LOS A 1.6 11.3 0.58 0.70 53.	Appro	ach	560	1.8	0.255	5.3	LOSA	1.5	10.8	0.53	0.53	55.3
5 T1 14 17.0 0.054 4.1 LOS A 0.3 2.0 0.71 0.69 46. 6 R2 26 0.0 0.054 8.6 LOS A 0.3 2.0 0.71 0.69 47. Approach 48 12.3 0.054 7.5 LOS A 0.3 2.0 0.71 0.69 47. North: Hogbin Drive 7 L2 8 0.0 0.342 4.9 LOS A 2.2 15.5 0.49 0.48 48. 8 T1 604 2.0 0.418 4.8 LOS A 3.0 21.1 0.50 0.52 55. 9 R2 301 1.0 0.418 10.3 LOS B 3.0 21.1 0.50 0.59 54. Approach 914 1.7 0.418 6.6 LOS A 3.0 21.1 0.50 0.55 54. West: Stadium Drive 10 LOS A	East:	Doug Knig	ght Drive									
6 R2 26 0.0 0.054 8.6 LOS A 0.3 2.0 0.71 0.69 47. Approach 48 12.3 0.054 7.5 LOS A 0.3 2.0 0.71 0.70 46. North: Hogbin Drive 7 L2 8 0.0 0.342 4.9 LOS A 2.2 15.5 0.49 0.48 48. 8 T1 604 2.0 0.418 4.8 LOS A 3.0 21.1 0.50 0.52 55. 9 R2 301 1.0 0.418 10.3 LOS B 3.0 21.1 0.50 0.59 54. Approach 914 1.7 0.418 6.6 LOS A 3.0 21.1 0.50 0.55 54. West: Stadium Drive 10 L2 318 0.0 0.294 5.4 LOS A 1.6 11.3 0.58 0.65 54. 11 T1 7 33.0 0.246 6.8 LOS A 1.3 8.9 0.59 0.77 46. 12 R2 209 1.0 0.246 11.5 LOS B 1.3 8.9 0.59 0.77 52. Approach 535 0.8 0.294 7.8 LOS A 1.6 11.3 0.58 0.70 53.	4	L2	8	43.0	0.025	9.6	LOS A	0.1	1.0	0.72	0.71	42.8
Approach 48 12.3 0.054 7.5 LOS A 0.3 2.0 0.71 0.70 46. North: Hogbin Drive 7 L2 8 0.0 0.342 4.9 LOS A 2.2 15.5 0.49 0.48 48. 8 T1 604 2.0 0.418 4.8 LOS A 3.0 21.1 0.50 0.52 55. 9 R2 301 1.0 0.418 10.3 LOS B 3.0 21.1 0.50 0.59 54. Approach 914 1.7 0.418 6.6 LOS A 3.0 21.1 0.50 0.55 54. West: Stadium Drive 10 L2 318 0.0 0.294 5.4 LOS A 1.6 11.3 0.58 0.65 54. 11 T1 7 33.0 0.246 6.8 LOS A 1.3 8.9 0.59 0.77 46. 12 R2	5	T1	14	17.0	0.054	4.1	LOS A	0.3	2.0	0.71	0.69	46.3
North: Hogbin Drive 7	6	R2	26	0.0	0.054	8.6	LOS A	0.3	2.0	0.71	0.69	47.0
7 L2 8 0.0 0.342 4.9 LOS A 2.2 15.5 0.49 0.48 48 8 T1 604 2.0 0.418 4.8 LOS A 3.0 21.1 0.50 0.52 55 9 R2 301 1.0 0.418 10.3 LOS B 3.0 21.1 0.50 0.59 54 Approach 914 1.7 0.418 6.6 LOS A 3.0 21.1 0.50 0.59 54 West: Stadium Drive 10 L2 318 0.0 0.294 5.4 LOS A 1.6 11.3 0.58 0.65 54 11 T1 7 33.0 0.246 6.8 LOS A 1.3 8.9 0.59 0.77 46 12 R2 209 1.0 0.246 11.5 LOS B 1.3 8.9 0.59 0.77 52 Approach 535 0.8 0	Appro	ach	48	12.3	0.054	7.5	LOSA	0.3	2.0	0.71	0.70	46.0
8 T1 604 2.0 0.418 4.8 LOS A 3.0 21.1 0.50 0.52 55. 9 R2 301 1.0 0.418 10.3 LOS B 3.0 21.1 0.50 0.59 54. Approach 914 1.7 0.418 6.6 LOS A 3.0 21.1 0.50 0.55 54. West: Stadium Drive 10 L2 318 0.0 0.294 5.4 LOS A 1.6 11.3 0.58 0.65 54. 11 T1 7 33.0 0.246 6.8 LOS A 1.3 8.9 0.59 0.77 46. 12 R2 209 1.0 0.246 11.5 LOS B 1.3 8.9 0.59 0.77 52. Approach 535 0.8 0.294 7.8 LOS A 1.6 11.3 0.58 0.70 53.	North	: Hogbin [Orive									
9 R2 301 1.0 0.418 10.3 LOS B 3.0 21.1 0.50 0.59 54. Approach 914 1.7 0.418 6.6 LOS A 3.0 21.1 0.50 0.55 54. West: Stadium Drive 10 L2 318 0.0 0.294 5.4 LOS A 1.6 11.3 0.58 0.65 54. 11 T1 7 33.0 0.246 6.8 LOS A 1.3 8.9 0.59 0.77 46. 12 R2 209 1.0 0.246 11.5 LOS B 1.3 8.9 0.59 0.77 52. Approach 535 0.8 0.294 7.8 LOS A 1.6 11.3 0.58 0.70 53.	7	L2	8	0.0	0.342	4.9	LOS A	2.2	15.5	0.49	0.48	48.4
Approach 914 1.7 0.418 6.6 LOS A 3.0 21.1 0.50 0.55 54. West: Stadium Drive 10 L2 318 0.0 0.294 5.4 LOS A 1.6 11.3 0.58 0.65 54. 11 T1 7 33.0 0.246 6.8 LOS A 1.3 8.9 0.59 0.77 46. 12 R2 209 1.0 0.246 11.5 LOS B 1.3 8.9 0.59 0.77 52. Approach 535 0.8 0.294 7.8 LOS A 1.6 11.3 0.58 0.70 53.	8	T1	604	2.0	0.418	4.8	LOS A	3.0	21.1	0.50	0.52	55.0
West: Stadium Drive 10 L2 318 0.0 0.294 5.4 LOS A 1.6 11.3 0.58 0.65 54. 11 T1 7 33.0 0.246 6.8 LOS A 1.3 8.9 0.59 0.77 46. 12 R2 209 1.0 0.246 11.5 LOS B 1.3 8.9 0.59 0.77 52. Approach 535 0.8 0.294 7.8 LOS A 1.6 11.3 0.58 0.70 53.	9	R2	301	1.0	0.418	10.3	LOS B	3.0	21.1	0.50	0.59	54.3
10 L2 318 0.0 0.294 5.4 LOS A 1.6 11.3 0.58 0.65 54. 11 T1 7 33.0 0.246 6.8 LOS A 1.3 8.9 0.59 0.77 46. 12 R2 209 1.0 0.246 11.5 LOS B 1.3 8.9 0.59 0.77 52. Approach 535 0.8 0.294 7.8 LOS A 1.6 11.3 0.58 0.70 53.	Appro	ach	914	1.7	0.418	6.6	LOS A	3.0	21.1	0.50	0.55	54.7
11 T1 7 33.0 0.246 6.8 LOS A 1.3 8.9 0.59 0.77 46. 12 R2 209 1.0 0.246 11.5 LOS B 1.3 8.9 0.59 0.77 52. Approach 535 0.8 0.294 7.8 LOS A 1.6 11.3 0.58 0.70 53.	West:	Stadium	Drive									
12 R2 209 1.0 0.246 11.5 LOS B 1.3 8.9 0.59 0.77 52. Approach 535 0.8 0.294 7.8 LOS A 1.6 11.3 0.58 0.70 53.	10	L2	318	0.0	0.294	5.4	LOS A	1.6	11.3	0.58	0.65	54.3
Approach 535 0.8 0.294 7.8 LOS A 1.6 11.3 0.58 0.70 53.	11	T1	7	33.0	0.246	6.8	LOS A	1.3	8.9	0.59	0.77	46.7
Approach 535 0.8 0.294 7.8 LOS A 1.6 11.3 0.58 0.70 53.	12	R2	209	1.0	0.246	11.5	LOS B	1.3	8.9	0.59	0.77	52.3
	Appro	ach	535				LOSA		11.3	0.58	0.70	53.4
All Vehicles 2057 1.7 0.418 6.6 LOS A 3.0 21.1 0.53 0.58 54.	All Ve	hicles	2057	1.7	0.418	6.6	LOSA	3.0	21.1	0.53	0.58	54.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Wednesday, 22 August 2018 2:19:40 PM Project: P:\P3480 SCU Coffs Harbour TIA\Technical Work\Models\P3480.004M Hogbin Roundabout_1.0PC.sip7

∀ Site: 1 [2019 AM BG]

Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout 2019 Forecast Background Traffic Volumes AM Peak Hour Roundabout

Move	ement Pe	erformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Cauth	منطبه ما ا	veh/h	%	v/c	sec		veh	m		per veh	km/h
	: Hogbin										
1	L2	147	19.0	0.488	6.1	LOS A	3.6	26.5	0.66	0.59	52.9
2	T1	803	2.0	0.488	5.8	LOS A	3.6	26.5	0.66	0.61	54.7
3	R2	81	9.0	0.488	11.9	LOS B	3.5	25.0	0.67	0.62	51.1
Appro	ach	1032	5.0	0.488	6.3	LOSA	3.6	26.5	0.66	0.61	54.2
East:	Doug Kni	ight Drive									
4	L2	22	33.0	0.053	7.6	LOS A	0.2	2.1	0.71	0.71	44.5
5	T1	26	18.0	0.091	3.8	LOS A	0.5	3.8	0.70	0.68	46.6
6	R2	41	11.0	0.091	8.7	LOS A	0.5	3.8	0.70	0.68	46.9
Appro	ach	89	18.5	0.091	7.0	LOSA	0.5	3.8	0.71	0.69	46.2
North	: Hogbin I	Drive									
7	L2	203	5.0	0.413	5.7	LOS A	2.7	20.1	0.61	0.60	48.0
8	T1	503	5.0	0.505	5.5	LOS A	3.9	27.9	0.62	0.62	54.3
9	R2	291	3.0	0.505	11.1	LOS B	3.9	27.9	0.64	0.64	53.9
Appro	ach	997	4.4	0.505	7.2	LOSA	3.9	27.9	0.62	0.62	53.2
West:	Stadium	Drive									
10	L2	335	3.0	0.411	7.2	LOS A	2.5	17.9	0.77	0.89	53.5
11	T1	125	1.0	0.370	8.1	LOS A	2.0	14.7	0.77	0.89	47.3
12	R2	105	9.0	0.370	14.2	LOS B	2.0	14.7	0.77	0.89	52.7
Appro	ach	565	3.7	0.411	8.7	LOSA	2.5	17.9	0.77	0.89	52.2
All Ve	hicles	2683	4.9	0.505	7.2	LOSA	3.9	27.9	0.67	0.67	53.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Wednesday, 22 August 2018 2:19:34 PM
Project: P:\P3480 SCU Coffs Harbour TIA\Technical Work\Models\P3480.004M Hogbin Roundabout_3.5PC.sip7

∀ Site: 1 [2019 AM DES]

Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout 2019 Forecast Design Traffic Volumes AM Peak Hour Roundabout

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average														
Mov	OD	Demand	l Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average				
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed				
0 11		veh/h	%	v/c	sec		veh	m		per veh	km/h				
	n: Hogbin														
1	L2	147	19.0	0.493	6.2	LOS A	3.6	26.9	0.67	0.59	52.9				
2	T1	803	2.0	0.493	5.8	LOS A	3.6	26.9	0.67	0.61	54.6				
3	R2	86	9.0	0.493	11.9	LOS B	3.5	25.4	0.68	0.63	51.0				
Appro	oach	1037	5.0	0.493	6.4	LOSA	3.6	26.9	0.67	0.61	54.1				
East:	Doug Kni	ght Drive													
4	L2	24	33.0	0.058	7.6	LOS A	0.3	2.4	0.72	0.71	44.5				
5	T1	28	18.0	0.099	3.9	LOS A	0.5	4.2	0.71	0.69	46.6				
6	R2	44	11.0	0.099	8.7	LOS A	0.5	4.2	0.71	0.69	46.8				
Appro	oach	97	18.6	0.099	7.0	LOSA	0.5	4.2	0.71	0.70	46.2				
North	: Hogbin [Orive													
7	L2	217	5.0	0.424	5.9	LOS A	2.8	20.7	0.62	0.62	48.0				
8	T1	503	5.0	0.518	5.7	LOS A	4.0	29.0	0.64	0.63	54.2				
9	R2	291	3.0	0.518	11.2	LOS B	4.0	29.0	0.66	0.65	53.9				
Appro	oach	1011	4.4	0.518	7.3	LOS A	4.0	29.0	0.64	0.63	53.1				
West	Stadium	Drive													
10	L2	335	3.0	0.414	7.3	LOS A	2.5	18.2	0.78	0.90	53.4				
11	T1	134	1.0	0.385	8.3	LOS A	2.1	15.5	0.77	0.90	47.3				
12	R2	105	9.0	0.385	14.3	LOS B	2.1	15.5	0.77	0.90	52.6				
Appro	oach	574	3.6	0.414	8.8	LOSA	2.5	18.2	0.78	0.90	52.1				
All Ve	hicles	2718	5.0	0.518	7.3	LOSA	4.0	29.0	0.68	0.68	53.1				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Wednesday, 22 August 2018 2:19:36 PM
Project: P:\P3480 SCU Coffs Harbour TIA\Technical Work\Models\P3480.004M Hogbin Roundabout_3.5PC.sip7

∀ Site: 1 [2019 PM BG]

Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout 2019 Forecast Background Traffic Volumes PM Peak Hour Roundabout

Move	ement Pe	erformance	- Vehic	les							
Mov	OD	Demand	l Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Courth	. Hogbin	veh/h	%	v/c	sec		veh	m		per veh	km/h
	: Hogbin			0.400	4.0				0.40	0.47	540
1	L2	67	3.0	0.166	4.6	LOS A	0.9	6.3	0.40	0.47	54.6
2	T1	324	1.0	0.166	4.6	LOS A	0.9	6.3	0.41	0.47	56.3
3	R2	4	40.0	0.166	11.2	LOS B	0.9	6.2	0.41	0.47	53.2
Appro	ach	396	1.8	0.166	4.7	LOSA	0.9	6.3	0.41	0.47	55.9
East:	Doug Kni	ght Drive									
4	L2	6	43.0	0.016	7.7	LOS A	0.1	0.6	0.65	0.60	44.2
5	T1	12	17.0	0.037	2.9	LOS A	0.2	1.2	0.59	0.58	47.2
6	R2	21	0.0	0.037	7.5	LOS A	0.2	1.2	0.59	0.58	47.9
Appro	ach	39	12.0	0.037	6.2	LOSA	0.2	1.2	0.60	0.59	47.1
North	: Hogbin [Drive									
7	L2	6	0.0	0.228	4.4	LOS A	1.3	9.2	0.37	0.43	49.2
8	T1	428	2.0	0.279	4.3	LOS A	1.7	12.1	0.37	0.48	55.6
9	R2	214	1.0	0.279	9.9	LOS A	1.7	12.1	0.37	0.56	54.8
Appro	ach	648	1.7	0.279	6.1	LOS A	1.7	12.1	0.37	0.50	55.3
West:	Stadium	Drive									
10	L2	225	0.0	0.190	4.8	LOS A	1.0	6.8	0.47	0.57	54.7
11	T1	5	33.0	0.156	5.9	LOS A	0.8	5.4	0.48	0.69	47.1
12	R2	148	1.0	0.156	10.8	LOS B	0.8	5.4	0.48	0.69	52.7
Appro	ach	379	0.9	0.190	7.2	LOSA	1.0	6.8	0.47	0.62	53.8
All Ve	hicles	1462	1.7	0.279	6.0	LOSA	1.7	12.1	0.41	0.53	54.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Wednesday, 22 August 2018 2:19:35 PM Project: P:\P3480 SCU Coffs Harbour TIA\Technical Work\Models\P3480.004M Hogbin Roundabout_3.5PC.sip7

∀ Site: 1 [2019 PM DES]

Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout 2019 Forecast Design Traffic Volumes PM Peak Hour Roundabout

Move	ement Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	n: Hogbin [veh/h	%	v/c	sec		veh	m		per veh	km/h
	•		0.0	0.407	4.0	1.00.4	0.0	0.0	0.40	0.47	545
1	L2	67	3.0	0.167	4.6	LOSA	0.9	6.3	0.40	0.47	54.5
2	T1	324	1.0	0.167	4.6	LOSA	0.9	6.3	0.41	0.47	56.2
3	R2	5	40.0	0.167	11.2	LOS B	0.9	6.2	0.42	0.47	53.2
Appro	oach	397	1.9	0.167	4.7	LOS A	0.9	6.3	0.41	0.47	55.9
East:	Doug Knig	ght Drive									
4	L2	7	43.0	0.019	7.7	LOSA	0.1	0.7	0.65	0.61	44.2
5	T1	12	17.0	0.039	2.9	LOS A	0.2	1.3	0.60	0.59	47.1
6	R2	23	0.0	0.039	7.5	LOS A	0.2	1.3	0.60	0.59	47.8
Appro	oach	42	12.2	0.039	6.3	LOS A	0.2	1.3	0.61	0.59	47.0
North	: Hogbin D)rive									
7	L2	7	0.0	0.229	4.4	LOSA	1.3	9.3	0.37	0.43	49.2
8	T1	428	2.0	0.280	4.3	LOS A	1.7	12.2	0.37	0.48	55.6
9	R2	214	1.0	0.280	9.9	LOSA	1.7	12.2	0.37	0.56	54.8
Appro	oach	649	1.6	0.280	6.2	LOSA	1.7	12.2	0.37	0.51	55.3
West	: Stadium I	Drive									
10	L2	225	0.0	0.191	4.8	LOSA	1.0	6.8	0.47	0.57	54.7
11	T1	6	33.0	0.157	5.9	LOS A	0.8	5.4	0.48	0.70	47.1
12	R2	148	1.0	0.157	10.8	LOS B	0.8	5.4	0.48	0.70	52.7
Appro	oach	380	0.9	0.191	7.2	LOSA	1.0	6.8	0.47	0.62	53.8
All Ve	hicles	1468	1.8	0.280	6.0	LOSA	1.7	12.2	0.41	0.53	54.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Wednesday, 22 August 2018 2:19:37 PM Project: P:\P3480 SCU Coffs Harbour TIA\Technical Work\Models\P3480.004M Hogbin Roundabout_3.5PC.sip7

Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout 2029 Forecast Background Traffic Volumes AM Peak Hour Roundabout

Move	ement Pe	erformance	- Vehic	les				_	_		
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	n: Hogbin I	veh/h	%	v/c	sec		veh	m		per veh	km/h
1	L2	207	19.0	0.797	13.2	LOS B	12.1	89.8	0.99	1.09	49.4
2	T1	1133	2.0	0.797	13.1	LOS B	12.1	89.8	1.00	1.11	50.6
3	R2	100	9.0	0.797	19.8	LOS B	11.6	83.5	1.00	1.13	45.7
Appro	oach	1440	4.9	0.797	13.6	LOS B	12.1	89.8	1.00	1.11	50.2
East:	Doug Kni	ght Drive									
4	L2	27	33.0	0.096	10.5	LOS B	0.5	4.2	0.82	0.85	42.3
5	T1	33	18.0	0.164	6.0	LOS A	1.0	7.7	0.86	0.88	45.2
6	R2	51	11.0	0.164	10.8	LOS B	1.0	7.7	0.86	0.88	45.5
Appro	oach	111	18.5	0.164	9.3	LOSA	1.0	7.7	0.85	0.88	44.6
North	: Hogbin [Orive									
7	L2	248	5.0	0.624	8.5	LOS A	6.0	44.1	0.82	0.85	46.5
8	T1	711	5.0	0.763	9.2	LOS A	10.6	77.0	0.88	0.90	52.5
9	R2	411	3.0	0.763	15.4	LOS B	10.6	77.0	0.92	0.94	51.6
Appro	oach	1369	4.4	0.763	11.0	LOS B	10.6	77.0	0.88	0.90	51.4
West	Stadium	Drive									
10	L2	472	3.0	0.834	19.3	LOS B	8.8	63.2	1.00	1.25	45.5
11	T1	154	1.0	0.750	18.2	LOS B	5.9	42.7	0.95	1.15	39.9
12	R2	149	9.0	0.750	24.5	LOS C	5.9	42.7	0.95	1.15	46.1
Appro	oach	775	3.8	0.834	20.1	LOS C	8.8	63.2	0.98	1.21	44.7
All Ve	hicles	3695	4.9	0.834	13.9	LOS B	12.1	89.8	0.95	1.05	49.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Wednesday, 22 August 2018 2:19:37 PM Project: P:\P3480 SCU Coffs Harbour TIA\Technical Work\Models\P3480.004M Hogbin Roundabout_3.5PC.sip7

∀ Site: 1 [2029 AM DES]

Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout 2029 Forecast Design Traffic Volumes AM Peak Hour Roundabout

Move	ement Pe	erformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Courth	u Haabia	veh/h	%	v/c	sec		veh	m		per veh	km/h
	n: Hogbin		40.0	0.000	40.4		10.1	04.0	4.00	4.40	40.0
1	L2	207	19.0	0.802	13.4	LOS B	12.4	91.9	1.00	1.10	49.3
2	T1	1133	2.0	0.802	13.4	LOS B	12.4	91.9	1.00	1.12	50.4
3	R2	105	9.0	0.802	20.0	LOS C	11.9	85.4	1.00	1.13	45.4
Appro	oach	1445	4.9	0.802	13.9	LOS B	12.4	91.9	1.00	1.11	50.0
East:	Doug Kni	ght Drive									
4	L2	27	33.0	0.097	10.6	LOS B	0.5	4.2	0.83	0.86	42.2
5	T1	33	18.0	0.166	6.1	LOS A	1.0	7.9	0.87	0.89	45.2
6	R2	51	11.0	0.166	10.8	LOS B	1.0	7.9	0.87	0.89	45.4
Appro	oach	111	18.5	0.166	9.4	LOSA	1.0	7.9	0.86	0.88	44.6
North	: Hogbin I	Orive									
7	L2	262	5.0	0.639	8.9	LOS A	6.4	46.6	0.83	0.88	46.3
8	T1	711	5.0	0.781	9.9	LOS A	11.5	83.0	0.90	0.94	52.0
9	R2	411	3.0	0.781	16.2	LOS B	11.5	83.0	0.94	0.98	51.2
Appro	oach	1383	4.4	0.781	11.6	LOS B	11.5	83.0	0.90	0.94	50.9
West:	Stadium	Drive									
10	L2	472	3.0	0.840	19.8	LOS B	9.0	64.3	1.00	1.26	45.2
11	T1	162	1.0	0.774	19.5	LOS B	6.2	45.6	0.96	1.17	39.2
12	R2	149	9.0	0.774	25.7	LOS C	6.2	45.6	0.96	1.17	45.5
Appro	oach	783	3.7	0.840	20.9	LOS C	9.0	64.3	0.98	1.22	44.2
All Ve	hicles	3722	4.9	0.840	14.3	LOS B	12.4	91.9	0.96	1.06	48.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Wednesday, 22 August 2018 2:19:39 PM
Project: P:\P3480 SCU Coffs Harbour TIA\Technical Work\Models\P3480.004M Hogbin Roundabout_3.5PC.sip7

∀ Site: 1 [2029 PM BG]

Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout 2029 Forecast Background Traffic Volumes PM Peak Hour Roundabout

Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Hogbin [Orive									
1	L2	96	3.0	0.254	5.1	LOS A	1.5	10.8	0.52	0.53	54.0
2	T1	458	1.0	0.254	5.2	LOS A	1.5	10.8	0.53	0.53	55.6
3	R2	5	40.0	0.254	12.0	LOS B	1.5	10.5	0.53	0.53	52.4
Appro	ach	559	1.7	0.254	5.2	LOSA	1.5	10.8	0.52	0.53	55.3
East:	Doug Knig	ght Drive									
4	L2	8	43.0	0.025	9.6	LOS A	0.1	1.0	0.72	0.71	42.8
5	T1	14	17.0	0.054	4.1	LOS A	0.3	2.0	0.71	0.69	46.3
6	R2 26 0.0 0.		0.054	8.6	LOS A	0.3	2.0	0.71	0.69	47.0	
Appro	ach	48	12.3	0.054	7.5	LOSA	0.3	2.0	0.71	0.70	46.0
North	: Hogbin D	rive									
7	L2	8	0.0	0.342	4.9	LOS A	2.2	15.5	0.49	0.48	48.4
8	T1	604	2.0	0.418	4.8	LOS A	3.0	21.1	0.49	0.52	55.0
9	R2	301	1.0	0.418	10.3	LOS B	3.0	21.1	0.50	0.59	54.3
Appro	ach	914	1.7	0.418	6.6	LOSA	3.0	21.1	0.50	0.55	54.7
West:	Stadium I	Orive									
10	L2	318	0.0	0.293	5.4	LOS A	1.6	11.3	0.58	0.65	54.3
11	T1	7	33.0	0.245	6.8	LOS A	1.2	8.9	0.58	0.77	46.7
12	R2	209	1.0	0.245	11.5	LOS B	1.2	8.9	0.58	0.77	52.3
Appro		535	0.8	0.293	7.8	LOSA	1.6	11.3	0.58	0.70	53.4
All Ve	hicles	2056	1.7	0.418	6.6	LOSA	3.0	21.1	0.53	0.58	54.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Wednesday, 22 August 2018 2:19:38 PM
Project: P:\P3480 SCU Coffs Harbour TIA\Technical Work\Models\P3480.004M Hogbin Roundabout_3.5PC.sip7

∀ Site: 1 [2029 PM DES]

Hogbin Drive / Stadium Drive / Doug Knight Drive Roundabout 2029 Forecast Design Traffic Volumes PM Peak Hour Roundabout

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
South	: Hogbin I		70	V/C	300		VCII	- '''		per veri	KIII/II
1	L2	96	3.0	0.255	5.1	LOSA	1.5	10.8	0.52	0.53	54.0
2	T1	458	1.0	0.255	5.2	LOS A	1.5	10.8	0.53	0.53	55.6
3	R2	6	40.0	0.255	12.0	LOS B	1.5	10.5	0.53	0.53	52.4
Appro	ach	560	1.8	0.255	5.3	LOSA	1.5	10.8	0.53	0.53	55.3
East:	Doug Kni	ght Drive									
4	L2	8	43.0	0.025	9.6	LOS A	0.1	1.0	0.72	0.71	42.8
5			17.0	0.054	4.1	LOS A	0.3	2.0	0.71	0.69	46.3
6	R2	26	0.0	0.054	8.6	LOS A	0.3	2.0	0.71	0.69	47.0
Appro	ach	48	12.3	0.054	7.5	LOSA	0.3	2.0	0.71	0.70	46.0
North:	Hogbin [Orive									
7	L2	8	0.0	0.342	4.9	LOS A	2.2	15.5	0.49	0.48	48.4
8	T1	604	2.0	0.418	4.8	LOS A	3.0	21.1	0.50	0.52	55.0
9	R2	301	1.0	0.418	10.3	LOS B	3.0	21.1	0.50	0.59	54.3
Appro	ach	914	1.7	0.418	6.6	LOSA	3.0	21.1	0.50	0.55	54.7
West:	Stadium	Drive									
10	L2	318	0.0	0.294	5.4	LOS A	1.6	11.3	0.58	0.65	54.3
11	T1	7	33.0	0.246	6.8	LOS A	1.3	8.9	0.59	0.77	46.7
12	R2	209	1.0	0.246	11.5	LOS B	1.3	8.9	0.59	0.77	52.3
Appro	ach	535	0.8	0.294	7.8	LOSA	1.6	11.3	0.58	0.70	53.4
All Ve	hicles	2057	1.7	0.418	6.6	LOSA	3.0	21.1	0.53	0.58	54.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Wednesday, 22 August 2018 2:19:40 PM Project: P:\P3480 SCU Coffs Harbour TIA\Technical Work\Models\P3480.004M Hogbin Roundabout_3.5PC.sip7

APPENDIX G

TDC PARKING SURVEY DATA

Day/Date	Supply	7:00 AM	8:00 AM	9:00 AM	10:00 AM	11:00 AM	12:00 PM	1:00 PM	2:00 PM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	Average Spaces Occupied 7:00am - 6:00pm	Max Spaces Occupied 7:00am - 6:00pm
Wednesday, 1 August 2018	921	55	202	695	851	854	847	729	700	570	366	198	135	517	854
Thursday, 2 August 2018	921	63	187	465	610	598	358	172	118	105	91	72	67	242	610
2 Day Average		59	195	580	731	726	603	451	409	338	229	135	101	380	

					т																						Average Spaces	Max Spaces
Street Section II	Thursday 2nd August 2018		7:0	0 AM	8:0	MA	9:00 AM		10:00 AM		11:00 AM		12:00 PM		1:00 PM		2:00 PM		3:00 PM		4:00 PM		5:00 PM		6:00 PM		Occupied 7:00am -	
Section II	Description	Supply	Occ	%	Occ	%	Occ	%	Occ	%	Occ	%	Occ	%	Occ	%	Occ	%	Occ	%	Occ	%	Occ	%	Occ	%	6:00pm	6:00pm
1	A Block/Head of Campus Parking west side	5	0	0%	0	0%	1	20%	2	40%	2	40%	3	60%	2	40%	1	20%	0	0%	1	20%	1	20%	0	0%	1	3
2	A Block/Head of Campus Parking east side	4	0	0%	0	0%	0	0%	0	0%	3	75%	4	100%	2	50%	0	0%	0	0%	3	75%	2	50%	1	25%	1	4
3	O Block carpark on Doug Knight Dr	5	2	40%	3	60%	5	100%	5	100%	5	100%	5	100%	3	60%	3	60%	1	20%	1	20%	0	0%	4	80%	3	5
4	Staff Parking Carpark	49	0	0%	9	18%	39	80%	41	84%	41	84%	25	51%	6	12%	3	6%	2	4%	2	4%	0	0%	1	2%	14	41
5	Large Carpark next to Block N	75	0	0%	23	31%	40	53%	43	57%	39	52%	10	13%	0	0%	0	0%	0	0%	0	0%	0	0%	1	1%	13	43
6	Carpark in front of Block K	10	1	10%	5	50%	5	50%	5	50%	5	50%	5	50%	4	40%	1	10%	1	10%	1	10%	1	10%	1	10%	3	5
7	Roadside marked bays btw Blocks S & I (west side)	13	2	15%	7	54%	10	77%	10	77%	10	77%	6	46%	3	23%	3	23%	2	15%	2	15%	0	0%	2	15%	5	10
8	Roadside Marked Bays btw K Block & Innovation Centre entrance	23	1	4%	5	22%	8	35%	7	30%	8	35%	7	30%	5	22%	2	9%	3	13%	3	13%	1	4%	2	9%	4	8
9	Roadside marked bays from Innov. Centre entrance to carpark entrance	9	0	0%	4	44%	7	78%	7	78%	7	78%	4	44%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	2	7
10	Innovation Centre Carpark	21	0	0%	2	10%	7	33%	12	57%	11	52%	6	29%	2	10%	2	10%	2	10%	1	5%	0	0%	0	0%	4	12
11	Carpark in front of Block M	68	0	0%	25	37%	45	66%	60	88%	67	99%	46	68%	36	53%	24	35%	22	32%	12	18%	7	10%	2	3%	29	67
12	3 Carparks opposite entrance to Innovation Centre Carpark	3	0	0%	0	0%	2	67%	2	67%	2	67%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	1	2
13	Library / E Block Undercover Carpark	34	9	26%	11	32%	17	50%	19	56%	20	59%	12	35%	8	24%	8	24%	8	24%	9	26%	10	29%	9	26%	12	20
14	Cars in marked bays in front of Library Undercover parking	7	1	14%	2	29%	5	71%	5	71%	4	57%	3	43%	1	14%	1	14%	1	14%	1	14%	1	14%	1	14%	2	5
15	Cars parked parallel to curb in marked bays	5	0	0%	0	0%	3	60%	4	80%	4	80%	1	20%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	1	4
16	Undercover Parking under LHS of Block I	7	1	14%	3	43%	4	57%	4	57%	4	57%	4	57%	1	14%	1	14%	1	14%	0	0%	0	0%	0	0%	2	4
17	Undercover parking under RHS of Block I	3	1	33%	2	67%	3	100%	3	100%	3	100%	1	33%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	1	3
18	Large Carpark on corner of Memorial Dr & Doug Knight Dr (Hogbin Dr side)	211	5	2%	5	2%	43	20%	67	32%	64	30%	37	18%	10	5%	5	2%	6	3%	5	2%	1	0%	2	1%	21	67
19	Carpark on corner of Memorial Dr & Doug Knight Dr (Campus side)	42	0	0%	8	19%	42	100%	42	100%	41	98%	28	67%	7	17%	5	12%	5	12%	4	10%	4	10%	2	5%	16	42
20	Large Carpark on Memorial Dr btw T Block (Sports Centre) & L Block	180	12	7%	24	13%	97	54%	157	87%	149	83%	87	48%	37	21%	23	13%	19	11%	12	7%	11	6%	9	5%	53	157
21	Small carpark at L Block	23	22	96%	22	96%	22	96%	23	100%	23	100%	23	100%	22	96%	19	83%	19	83%	18	78%	18	78%	18	78%	21	23
22	Parked line of cars at right angle to L Block	7	5	71%	5	71%	5	71%	7	100%	7	100%	7	100%	5	71%	6	86%	5	71%	5	71%	6	86%	5	71%	6	7
23	Roadside angled parking btw L Block & P Block	30	0	0%	3	10%	14	47%	23	77%	20	67%	6	20%	0	0%	0	0%	0	0%	2	7%	2	7%	2	7%	6	23
24	Cars parked beside P Block	4	1	25%	1	25%	2	50%	2	50%	1	25%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	1	2
25	Small carpark in front of P Block	15	0	0%	7	47%	10	67%	11	73%	10	67%	4	27%	1	7%	1	7%	1	7%	4	27%	4	27%	4	27%	5	11
26	Carpark at H Block	13	0	0%	3	23%	6	46%	13	100%	13	100%	9	69%	6	46%	3	23%	2	15%	0	0%	0	0%	0	0%	5	13
27	Roadside Parking btw P Block & H Block	49	0	0%	8	16%	21	43%	32	65%	30	61%	12	24%	9	18%	7	14%	5	10%	5	10%	3	6%	1	2%	11	32
28	Marked Parking area Nth of Area 27 (above)	6	0	0%	0	0%	2	33%	4	67%	5	83%	3	50%	2	33%	0	0%	0	0%	0	0%	0	0%	0	0%	1	5
	Grand Total	921	63	7%	187	20%	465	50%	610	66%	598	65%	358	39%	172	19%	118	13%	105	11%	91	10%	72	8%	67	7%	242	610

Street	Wednesday 1st August 2018	7:00 AM) AM	8:00 AM		9:00 AM		10:00 AM		11:00 AM		12:00 PM		1:00 PM		2:00	PM	3:00 PM		4:00 PM		5:00	PM (6:0	0 PM	Average Spaces	Max Spaces
Section ID	Description	Supply	Осс	%	Occ	%	Occ	%	Occ	%	Occ	%	Occ	%	Occ	%	Осс	%	Occ	%	Occ	%	Осс	%	Occ	%	Occupied 7:00am - 6:00pm	Occupied 7:00am - 6:00pm
1	A Block/Head of Campus Parking west side	5	0	0%	0	0%	0	0%	2	40%	1	20%	1	20%	2	40%	1	20%	0	0%	3	60%	3	60%	3	60%	1	3
2	A Block/Head of Campus Parking east side	4	0	0%	1	25%	1	25%	0	0%	1	25%	1	25%	1	25%	2	50%	3	75%	3	75%	3	75%	3	75%	2	3
3	O Block carpark on Doug Knight Dr	5	2	40%	3	60%	4	80%	5	100%	4	80%	4	80%	5	100%	4	80%	2	40%	4	80%	2	40%	0	0%	3	5
4	Staff Parking Carpark	49	0	0%	4	8%	42	86%	49	100%	49	100%	49	100%	47	96%	46	94%	39	80%	30	61%	12	24%	1	2%	31	49
5	Large Carpark next to Block N	75	0	0%	9	12%	33	44%	51	68%	53	71%	53	71%	54	72%	55	73%	38	51%	34	45%	9	12%	1	1%	33	55
6	Carpark in front of Block K	10	1	10%	5	50%	4	40%	5	50%	6	60%	6	60%	5	50%	6	60%	4	40%	6	60%	2	20%	1	10%	4	6
7	Roadside marked bays btw Blocks S & I (west side)	13	0	0%	3	23%	9	69%	13	100%	13	100%	13	100%	13	100%	13	100%	7	54%	3	23%	4	31%	4	31%	8	13
8	Roadside Marked Bays btw K Block & Innovation Centre entrance	23	1	4%	4	17%	18	78%	20	87%	21	91%	21	91%	20	87%	17	74%	7	30%	5	22%	3	13%	6	26%	12	21
9	Roadside marked bays from Innov. Centre entrance to carpark entrance	9	0	0%	3	33%	9	100%	9	100%	8	89%	8	89%	9	100%	7	78%	7	78%	6	67%	3	33%	1	11%	6	9
10	Innovation Centre Carpark	21	0	0%	2	10%	7	33%	18	86%	18	86%	18	86%	18	86%	20	95%	15	71%	9	43%	4	19%	1	5%	11	20
11	Carpark in front of Block M	68	1	1%	20	29%	57	84%	68	100%	66	97%	66	97%	61	90%	66	97%	53	78%	28	41%	18	26%	4	6%	42	68
12	3 Carparks opposite entrance to Innovation Centre Carpark	3	0	0%	0	0%	2	67%	2	67%	3	100%	3	100%	2	67%	3	100%	3	100%	2	67%	1	33%	1	33%	2	3
13	Library / E Block Undercover Carpark	34	8	24%	12	35%	23	68%	27	79%	31	91%	31	91%	33	97%	34	100%	29	85%	19	56%	16	47%	15	44%	23	34
14	Cars in marked bays in front of Library Undercover parking	7	1	14%	1	14%	5	71%	5	71%	6	86%	6	86%	5	71%	5	71%	5	71%	4	57%	3	43%	2	29%	4	6
15	Cars parked parallel to curb in marked bays	5	0	0%	2	40%	5	100%	5	100%	5	100%	5	100%	4	80%	4	80%	4	80%	3	60%	0	0%	0	0%	3	5
16	Undercover Parking under LHS of Block I	7	1	14%	1	14%	3	43%	5	71%	5	71%	5	71%	5	71%	4	57%	4	57%	1	14%	1	14%	1	14%	3	5
17	Undercover parking under RHS of Block I	3	2	67%	2	67%	3	100%	3	100%	3	100%	3	100%	3	100%	3	100%	3	100%	3	100%	1	33%	0	0%	2	3
18	Large Carpark on corner of Memorial Dr & Doug Knight Dr (Hogbin Dr side)	211	3	1%	14	7%	131	62%	211	100%	207	98%	203	96%	147	70%	129	61%	101	48%	65	31%	41	19%	42	20%	108	211
19	Carpark on corner of Memorial Dr & Doug Knight Dr (Campus side)	42	0	0%	10	24%	40	95%	42	100%	40	95%	42	100%	40	95%	39	93%	41	98%	32	76%	7	17%	2	5%	28	42
20	Large Carpark on Memorial Dr btw T Block (Sports Centre) & L Block	180	9	5%	52	29%	180	100%	176	98%	177	98%	174	97%	144	80%	142	79%	111	62%	51	28%	26	14%	24	13%	106	180
21	Small carpark at L Block	23	14	61%	18	78%	22	96%	22	96%	23	100%	22	96%	20	87%	14	61%	20	87%	16	70%	6	26%	16	70%	18	23
22	Parked line of cars at right angle to L Block	7	5	71%	7	100%	7	100%	7	100%	7	100%	7	100%	5	71%	6	86%	6	86%	6	86%	3	43%	6	86%	6	7
23	Roadside angled parking btw L Block & P Block	30	3	10%	8	27%	22	73%	22	73%	23	77%	23	77%	21	70%	30	100%	19	63%	6	20%	3	10%	0	0%	15	30
24	Cars parked beside P Block	4	1	25%	1	25%	3	75%	3	75%	4	100%	4	100%	3	75%	2	50%	2	50%	2	50%	1	25%	0	0%	2	4
25	Small carpark in front of P Block	15	0	0%	5	33%	14	93%	15	100%	14	93%	14	93%	13	87%	13	87%	11	73%	5	33%	1	7%	0	0%	9	15
26	Carpark at H Block	13	0	0%	3	23%	8	62%	11	85%	11	85%	11	85%	13	100%	12	92%	10	77%	6	46%	6	46%	0	0%	8	13
27	Roadside Parking btw P Block & H Block	49	2	4%	11	22%	38	78%	49	100%	49	100%	48	98%	31	63%	21	43%	21	43%	11	22%	16	33%	1	2%	25	49
28	Marked Parking area Nth of Area 27 (above)	6	1	17%	1	17%	5	83%	6	100%	6	100%	6	100%	5	83%	2	33%	5	83%	3	50%	3	50%	0	0%	4	6
	Grand Total		55	6%	202	22%	695	75%	851	92%	854	93%	847	92%	729	79%	700	76%	570	62%	366	40%	198	21%	135	15%	517	854

APPENDIX H

McLaren Traffic Engineering Traffic Letter

M^CLAREN TRAFFIC ENGINEERING

Transport Planning, Traffic Impact Assessments, Road Safety Audits, Expert Witness

MIRANDA Office:

Level 1 29 Kiora Road MIRANDA NSW 2228 Ph 61-2-8543-3811 Fax 61-2-8543-3849 Email: mclarenc@ozemail.com.au
Website: www.mclarentraffic.com.au
Mobile (0412) 949-578

Accounts Office:

5 Jabiru Place Woronora Heights NSW 2233 Ph 61-2-9545-5161 Fax 61-2-9545-1227

2010/108.L01 CM/sm

2 September 2010

Facilities Management and Services Southern Cross University C/- NSW Public Works 359 Harbour Drive COFFS HARBOUR NSW 2450

Attention: Mr. John Timmers

Dear John,

TRAFFIC & PARKING IMPACT ASSESSMENT OF PROPOSED ADDITIONS TO BLOCKS H & M WITHIN THE EDUCATIONAL CAMPUS, COFFS HARBOUR

Reference is made to your request to provide a report on the impact of the proposed expanded areas of Blocks H & M within the Coffs Harbour Educational Campus at Hogbin Drive, Coffs Harbour to accommodate an extra 15 students and 5 staff.

The approximate expanded areas include the following:

- Internal space for block M = 850 m²
- Internal space for block H = 150 m²
- Internal space for block A = no change

The location of the site is shown in the diagrams below.

1. SITE LOCATION AND SURROUNDING CONTEXT

Situated on the east coast, the Coffs Harbour Education Campus (CHEC) is located south of Coffs Harbour city centre. CHEC consists of a combined High School, University & TAFE teaching facilities.

The site is bound by dense bush land to the north, east and south with access off Hogbin Drive to the west. The site currently includes existing buildings and car parking as shown on the Campus Site map (see above). There is a large dam to the south of the site. The campus buildings are generally clustered across a ridge on the site with a spine road and parking facilities that serve the various buildings on the site.

2. EXISTING TRANSPORT/TRAFFIC CONDITIONS

Road Hierarchy

Hogbin Drive is a REGIONAL road, carrying moderately high traffic volumes, under the care and control of the Coffs Harbour City Council. Recent upgrades of Hogbin Drive are currently under construction north of High Street, with the assistance of funding from Federal, State and local Council.

Stadium Drive is a collector road under the care and control of Coffs Harbour City Council. Stadium Drive is planned to become a future Regional road, as depicted in the diagram below, obtained from the Roads & Traffic Authority.

2010/108.L01 Page 2 of 7

RTA ROAD HIERARCHY PLAN

2010/108.L01 Page 3 of 7

3. ROAD CONDITIONS

Hogbin Drive is constructed as a variable width traffic corridor. Its general operating segment design conditions are as follows:

- High Street to General Aviation access ... 4 lane undivided (80km/h).
- General Aviation access to Airport ... 3 lane undivided (2 south) (80km/h).
- CH Airport to CHEC ... 2 lane undivided (80km/h).
- CHEC to Boambee Ck Bridge ... 3 lane undivided (2 north) (100km/h).
- On Boambee Ck Bridge to Sawtell Road ... 2 lane undivided (100km/h).

The above general speed limits reduce to 60km/h on the approaches to the roundabout controls located at the following Hogbin Drive intersections:

- High Street.
- □ CH Airport.
- CHEC / Stadium Drive. (A 40km/h school zone also applies)
- Sawtell Road.

Stadium Drive is generally constructed as a 2 lane undivided carriageway linking the Pacific Highway to Hogbin Drive.

4. TRAFFIC MANAGEMENT

The prevailing traffic management conditions within the vicinity of the site include:

- Round-a-bout at the intersection of Hogbin Drive with the CHEC access and Stadium Drive.
- □ 40km/h school zone speed limit applying on the southern leg of the above listed intersection (on Hogbin Drive south). The school zone speed limit applies from 8:00am to 9:30am and from 2:30pm to 4:00pm on school days.
- Other speed limits along Hogbin Drive as outlined above in Section 3.2 of this report.

5. PARKING DEMAND

Currently there are a total of some 858 designated car parking spaces on the site, including 16 disabled spaces.

Recent surveys of on-site parking demand showed a peak parking accumulation of 743 (i.e. 86.5%) vehicles at 10:00am. Thus the supply exceeds demand by some 115 cars.

During the evening, much less parking demand occurs, with an observed peak of 75 vehicles, no bicycles and 1 college bus at 7pm, representing 9% of capacity.

6. EXISTING STUDENT / STAFF ATTENDANCE

Previous inspections undertaken at the College indicate that peak student and staff numbers occur on campus at 10:00am. In the evening much less student and staff levels occur, unless there is a special event / function. Thus the peak parking demand period is during the day.

2010/108.L01 Page 4 of 7

Past surveys of the existing CHEC (as well as other Colleges) indicate that the typical maximum number of students on-site is equivalent to 25% of the effective full time (EFT) students at the campus. EFT is based upon the number of actual face-to-face teaching hours, many of these face-to-face teaching hours are for part time student positions, resulting in a smaller proportion of students on campus at any one time (due to the "floating" nature of students arriving / departing over any particular week and any particular day).

Hence for the additional 15 student places associated with the proposed development, this equates to 4 additional students on-site at any one time plus 1 extra staff. It should be noted that the peak use of the expanded accommodation areas will occur during the evening by PHD research students and staff undertaking research. Much less use of the proposed areas will be used by new students during the day.

7. TRAVEL MODE SPLIT

Based upon a previous questionnaire survey undertaken at CHEC, the following mode split characteristics for students were found:

	#Students	%	%	%	%	%
		Total	Bus	Driver	Passenger	Bike
SCU	235	37	9	76	12	3
TAFE	292	46	22	50	24	4
CHSC	106	17	53	13	28	6
TOTAL	633	100	22	53	20	5

Students travel habits surveyed at 10 am

Notes:

- 1. SCU University students
- 2. TAFE TAFE students
- 3. CHSC High School students

Of the students that drive to this College all park within the CHEC grounds at all times. The staff car driver proportion is 92%.

Hence during the peak daytime period, the additional 4 students will give rise to an additional parking need of **3** spaces (i.e. 76% SCU component x 4). The additional 1 staff will give rise to a need for a further **1** car, thus an extra demand of **4** car spaces is needed for the subject development.

8. PLANNED TRANSPORT INFRASTRUCTURE

No significant road network improvements are currently committed or planned for the general locality. The Roads & Traffic Authority has no works planned in the immediate vicinity.

2010/108.L01 Page 5 of 7

9. PROPOSED DEVELOPMENT

The proposed expansion to Blocks M & H that will accommodate an extra 15 students and 5 staff comprises the following:

- Internal space for block M = 850 m²
- Internal space for block H = 150 m²
- Internal space for block A = no change

The plans of the proposed development are shown below with greater detail submitted to Council under separate cover.

2010/108.L01 Page 6 of 7

10. COUNCIL PARKING & ACCESS REQUIREMENTS

Coffs Harbour City Council does not specify a rate for parking for tertiary education establishments, but requires a parking study to justify needs.

The RTA has no specified rates for Colleges.

It is evident from parking demand discussion in Sections 5, 6 & 7 of this report for the CHEC College that extra on-site parking is not necessary as spare capacity exists on-site in excess of the additional demand of 4 parking spaces (3 for students and 1 for staff) associated with the proposed development.

11. PARKING ASSESSMENT

The existing on-site parking supply exceeds the operational peak parking demand needs of the combined effects of the existing CHEC College and proposed development.

At night the existing on-site parking supply is more than adequate.

12.TRAFFIC IMPACT

The proposed additional student vehicle numbers of **3** or even **12** [i.e. 15 x 76% by car] (as a worst case) plus 1 to **5** staff cars at any one time as an expected maximum would yield very low to low additional traffic levels. The additional arrival rate of 1 car per 15 minutes (i.e. 4 cars in an hour) or 1 car per 3 to 4 minutes (i.e. 4 cars in an hour) during the on-street commuter peak hour would not result in any change to the current level of service of the adjacent road network.

13. CONCLUSIONS

The proposed development is supportable in terms of traffic and parking impacts.

The existing on-site parking supply exceeds the operational peak parking demand needs of the combined effects of the existing CHEC College and proposed development. At night the existing on-site parking supply is more than adequate.

No adverse traffic flow efficiency, residential amenity or road safety effects will result from the proposed development. Finally as the proposed development does not exceed 500 new students or 250 new car parking spaces it does not require referral to the Regional Traffic Committee.

Please contact the undersigned should you require further information or assistance.

Yours faithfully

M^CLAREN TRAFFIC ENGINEERING

Craig M^CLaren

Director

BE Civil. Graduate Diploma (Transport Eng) MAITPM MITE RTA Accredited Level 3 Road Safety Auditor Traffic Control Plans (Red Card)

2010/108.L01 Page 7 of 7

APPENDIX I

SWEPT PATHS

